Aqbeż għall-kontenut ewlieni
Iddifferenzja w.r.t. t
Tick mark Image
Evalwa
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\mathrm{d}}{\mathrm{d}t}(\frac{2t^{3}}{7-3t^{2}+2t})
Żid 3 u 4 biex tikseb 7.
\frac{\left(-3t^{2}+2t^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}t}(2t^{3})-2t^{3}\frac{\mathrm{d}}{\mathrm{d}t}(-3t^{2}+2t^{1}+7)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(-3t^{2}+2t^{1}+7\right)\times 3\times 2t^{3-1}-2t^{3}\left(2\left(-3\right)t^{2-1}+2t^{1-1}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Id-derivattiv ta' polynomial huwa s-somma tad-derivattivi tat-termini tiegħu. Id-derivattiv ta' kwalunkwe terminu kostanti huwa 0. Id-derivattiv ta' ax^{n} huwa nax^{n-1}.
\frac{\left(-3t^{2}+2t^{1}+7\right)\times 6t^{2}-2t^{3}\left(-6t^{1}+2t^{0}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Issimplifika.
\frac{-3t^{2}\times 6t^{2}+2t^{1}\times 6t^{2}+7\times 6t^{2}-2t^{3}\left(-6t^{1}+2t^{0}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Immultiplika -3t^{2}+2t^{1}+7 b'6t^{2}.
\frac{-3t^{2}\times 6t^{2}+2t^{1}\times 6t^{2}+7\times 6t^{2}-\left(2t^{3}\left(-6\right)t^{1}+2t^{3}\times 2t^{0}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Immultiplika 2t^{3} b'-6t^{1}+2t^{0}.
\frac{-3\times 6t^{2+2}+2\times 6t^{1+2}+7\times 6t^{2}-\left(2\left(-6\right)t^{3+1}+2\times 2t^{3}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{-18t^{4}+12t^{3}+42t^{2}-\left(-12t^{4}+4t^{3}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Issimplifika.
\frac{-6t^{4}+8t^{3}+42t^{2}}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Ikkombina termini simili.
\frac{-6t^{4}+8t^{3}+42t^{2}}{\left(-3t^{2}+2t+7\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{2t^{3}}{7-3t^{2}+2t}
Żid 3 u 4 biex tikseb 7.