Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. r
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{2r}{r+10}+\frac{5\left(r+10\right)}{r+10}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 5 b'\frac{r+10}{r+10}.
\frac{2r+5\left(r+10\right)}{r+10}
Billi \frac{2r}{r+10} u \frac{5\left(r+10\right)}{r+10} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{2r+5r+50}{r+10}
Agħmel il-multiplikazzjonijiet fi 2r+5\left(r+10\right).
\frac{7r+50}{r+10}
Ikkombina termini simili f'2r+5r+50.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2r}{r+10}+\frac{5\left(r+10\right)}{r+10})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 5 b'\frac{r+10}{r+10}.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2r+5\left(r+10\right)}{r+10})
Billi \frac{2r}{r+10} u \frac{5\left(r+10\right)}{r+10} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2r+5r+50}{r+10})
Agħmel il-multiplikazzjonijiet fi 2r+5\left(r+10\right).
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{7r+50}{r+10})
Ikkombina termini simili f'2r+5r+50.
\frac{\left(r^{1}+10\right)\frac{\mathrm{d}}{\mathrm{d}r}(7r^{1}+50)-\left(7r^{1}+50\right)\frac{\mathrm{d}}{\mathrm{d}r}(r^{1}+10)}{\left(r^{1}+10\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(r^{1}+10\right)\times 7r^{1-1}-\left(7r^{1}+50\right)r^{1-1}}{\left(r^{1}+10\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(r^{1}+10\right)\times 7r^{0}-\left(7r^{1}+50\right)r^{0}}{\left(r^{1}+10\right)^{2}}
Agħmel l-aritmetika.
\frac{r^{1}\times 7r^{0}+10\times 7r^{0}-\left(7r^{1}r^{0}+50r^{0}\right)}{\left(r^{1}+10\right)^{2}}
Espandi bl-użu ta' propjetà distributtiva.
\frac{7r^{1}+10\times 7r^{0}-\left(7r^{1}+50r^{0}\right)}{\left(r^{1}+10\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{7r^{1}+70r^{0}-\left(7r^{1}+50r^{0}\right)}{\left(r^{1}+10\right)^{2}}
Agħmel l-aritmetika.
\frac{7r^{1}+70r^{0}-7r^{1}-50r^{0}}{\left(r^{1}+10\right)^{2}}
Neħħi l-parenteżi mhux meħtieġa.
\frac{\left(7-7\right)r^{1}+\left(70-50\right)r^{0}}{\left(r^{1}+10\right)^{2}}
Ikkombina termini simili.
\frac{20r^{0}}{\left(r^{1}+10\right)^{2}}
Naqqas 7 minn 7 u 50 minn 70.
\frac{20r^{0}}{\left(r+10\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{20\times 1}{\left(r+10\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\frac{20}{\left(r+10\right)^{2}}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.