Evalwa
5\sqrt{3}+6\sqrt{2}\approx 17.145535412
Fattur
5 \sqrt{3} + 6 \sqrt{2} = 17.145535412
Sehem
Ikkupjat fuq il-klibbord
\frac{2\left(\sqrt{3}+\sqrt{2}\right)\left(4+\sqrt{6}\right)}{\left(4-\sqrt{6}\right)\left(4+\sqrt{6}\right)}\times \frac{9-\sqrt{6}}{4-\sqrt{6}}
Irrazzjonalizza d-denominatur tal-\frac{2\left(\sqrt{3}+\sqrt{2}\right)}{4-\sqrt{6}} billi timmultiplika in-numeratur u d-denominatur mill-4+\sqrt{6}.
\frac{2\left(\sqrt{3}+\sqrt{2}\right)\left(4+\sqrt{6}\right)}{4^{2}-\left(\sqrt{6}\right)^{2}}\times \frac{9-\sqrt{6}}{4-\sqrt{6}}
Ikkunsidra li \left(4-\sqrt{6}\right)\left(4+\sqrt{6}\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{3}+\sqrt{2}\right)\left(4+\sqrt{6}\right)}{16-6}\times \frac{9-\sqrt{6}}{4-\sqrt{6}}
Ikkwadra 4. Ikkwadra \sqrt{6}.
\frac{2\left(\sqrt{3}+\sqrt{2}\right)\left(4+\sqrt{6}\right)}{10}\times \frac{9-\sqrt{6}}{4-\sqrt{6}}
Naqqas 6 minn 16 biex tikseb 10.
\frac{2\left(\sqrt{3}+\sqrt{2}\right)\left(4+\sqrt{6}\right)}{10}\times \frac{\left(9-\sqrt{6}\right)\left(4+\sqrt{6}\right)}{\left(4-\sqrt{6}\right)\left(4+\sqrt{6}\right)}
Irrazzjonalizza d-denominatur tal-\frac{9-\sqrt{6}}{4-\sqrt{6}} billi timmultiplika in-numeratur u d-denominatur mill-4+\sqrt{6}.
\frac{2\left(\sqrt{3}+\sqrt{2}\right)\left(4+\sqrt{6}\right)}{10}\times \frac{\left(9-\sqrt{6}\right)\left(4+\sqrt{6}\right)}{4^{2}-\left(\sqrt{6}\right)^{2}}
Ikkunsidra li \left(4-\sqrt{6}\right)\left(4+\sqrt{6}\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{3}+\sqrt{2}\right)\left(4+\sqrt{6}\right)}{10}\times \frac{\left(9-\sqrt{6}\right)\left(4+\sqrt{6}\right)}{16-6}
Ikkwadra 4. Ikkwadra \sqrt{6}.
\frac{2\left(\sqrt{3}+\sqrt{2}\right)\left(4+\sqrt{6}\right)}{10}\times \frac{\left(9-\sqrt{6}\right)\left(4+\sqrt{6}\right)}{10}
Naqqas 6 minn 16 biex tikseb 10.
\frac{2\left(\sqrt{3}+\sqrt{2}\right)\left(4+\sqrt{6}\right)\left(9-\sqrt{6}\right)\left(4+\sqrt{6}\right)}{10\times 10}
Immultiplika \frac{2\left(\sqrt{3}+\sqrt{2}\right)\left(4+\sqrt{6}\right)}{10} b'\frac{\left(9-\sqrt{6}\right)\left(4+\sqrt{6}\right)}{10} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{\left(\sqrt{6}+4\right)\left(\sqrt{6}+4\right)\left(-\sqrt{6}+9\right)\left(\sqrt{2}+\sqrt{3}\right)}{5\times 10}
Annulla 2 fin-numeratur u d-denominatur.
\frac{\left(\sqrt{6}+4\right)^{2}\left(-\sqrt{6}+9\right)\left(\sqrt{2}+\sqrt{3}\right)}{5\times 10}
Immultiplika \sqrt{6}+4 u \sqrt{6}+4 biex tikseb \left(\sqrt{6}+4\right)^{2}.
\frac{\left(\left(\sqrt{6}\right)^{2}+8\sqrt{6}+16\right)\left(-\sqrt{6}+9\right)\left(\sqrt{2}+\sqrt{3}\right)}{5\times 10}
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(\sqrt{6}+4\right)^{2}.
\frac{\left(6+8\sqrt{6}+16\right)\left(-\sqrt{6}+9\right)\left(\sqrt{2}+\sqrt{3}\right)}{5\times 10}
Il-kwadrat ta' \sqrt{6} huwa 6.
\frac{\left(22+8\sqrt{6}\right)\left(-\sqrt{6}+9\right)\left(\sqrt{2}+\sqrt{3}\right)}{5\times 10}
Żid 6 u 16 biex tikseb 22.
\frac{\left(22+8\sqrt{6}\right)\left(-\sqrt{6}+9\right)\left(\sqrt{2}+\sqrt{3}\right)}{50}
Immultiplika 5 u 10 biex tikseb 50.
\frac{\left(-22\sqrt{6}+198-8\left(\sqrt{6}\right)^{2}+72\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}\right)}{50}
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' 22+8\sqrt{6} b'kull terminu ta' -\sqrt{6}+9.
\frac{\left(-22\sqrt{6}+198-8\times 6+72\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}\right)}{50}
Il-kwadrat ta' \sqrt{6} huwa 6.
\frac{\left(-22\sqrt{6}+198-48+72\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}\right)}{50}
Immultiplika -8 u 6 biex tikseb -48.
\frac{\left(-22\sqrt{6}+150+72\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}\right)}{50}
Naqqas 48 minn 198 biex tikseb 150.
\frac{\left(50\sqrt{6}+150\right)\left(\sqrt{2}+\sqrt{3}\right)}{50}
Ikkombina -22\sqrt{6} u 72\sqrt{6} biex tikseb 50\sqrt{6}.
\frac{50\sqrt{6}\sqrt{2}+50\sqrt{6}\sqrt{3}+150\sqrt{2}+150\sqrt{3}}{50}
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' 50\sqrt{6}+150 b'kull terminu ta' \sqrt{2}+\sqrt{3}.
\frac{50\sqrt{2}\sqrt{3}\sqrt{2}+50\sqrt{6}\sqrt{3}+150\sqrt{2}+150\sqrt{3}}{50}
Iffattura 6=2\times 3. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{2\times 3} bħala l-prodott tal-għeruq kwadrati \sqrt{2}\sqrt{3}.
\frac{50\times 2\sqrt{3}+50\sqrt{6}\sqrt{3}+150\sqrt{2}+150\sqrt{3}}{50}
Immultiplika \sqrt{2} u \sqrt{2} biex tikseb 2.
\frac{100\sqrt{3}+50\sqrt{6}\sqrt{3}+150\sqrt{2}+150\sqrt{3}}{50}
Immultiplika 50 u 2 biex tikseb 100.
\frac{100\sqrt{3}+50\sqrt{3}\sqrt{2}\sqrt{3}+150\sqrt{2}+150\sqrt{3}}{50}
Iffattura 6=3\times 2. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{3\times 2} bħala l-prodott tal-għeruq kwadrati \sqrt{3}\sqrt{2}.
\frac{100\sqrt{3}+50\times 3\sqrt{2}+150\sqrt{2}+150\sqrt{3}}{50}
Immultiplika \sqrt{3} u \sqrt{3} biex tikseb 3.
\frac{100\sqrt{3}+150\sqrt{2}+150\sqrt{2}+150\sqrt{3}}{50}
Immultiplika 50 u 3 biex tikseb 150.
\frac{100\sqrt{3}+300\sqrt{2}+150\sqrt{3}}{50}
Ikkombina 150\sqrt{2} u 150\sqrt{2} biex tikseb 300\sqrt{2}.
\frac{250\sqrt{3}+300\sqrt{2}}{50}
Ikkombina 100\sqrt{3} u 150\sqrt{3} biex tikseb 250\sqrt{3}.
5\sqrt{3}+6\sqrt{2}
Iddividi kull terminu ta' 250\sqrt{3}+300\sqrt{2} b'50 biex tikseb5\sqrt{3}+6\sqrt{2}.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}