Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{2w}{w\left(w+2\right)}-\frac{3\left(w+2\right)}{w\left(w+2\right)}+\frac{w+10}{w^{2}-4}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' w+2 u w huwa w\left(w+2\right). Immultiplika \frac{2}{w+2} b'\frac{w}{w}. Immultiplika \frac{3}{w} b'\frac{w+2}{w+2}.
\frac{2w-3\left(w+2\right)}{w\left(w+2\right)}+\frac{w+10}{w^{2}-4}
Billi \frac{2w}{w\left(w+2\right)} u \frac{3\left(w+2\right)}{w\left(w+2\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{2w-3w-6}{w\left(w+2\right)}+\frac{w+10}{w^{2}-4}
Agħmel il-multiplikazzjonijiet fi 2w-3\left(w+2\right).
\frac{-w-6}{w\left(w+2\right)}+\frac{w+10}{w^{2}-4}
Ikkombina termini simili f'2w-3w-6.
\frac{-w-6}{w\left(w+2\right)}+\frac{w+10}{\left(w-2\right)\left(w+2\right)}
Iffattura w^{2}-4.
\frac{\left(-w-6\right)\left(w-2\right)}{w\left(w-2\right)\left(w+2\right)}+\frac{\left(w+10\right)w}{w\left(w-2\right)\left(w+2\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' w\left(w+2\right) u \left(w-2\right)\left(w+2\right) huwa w\left(w-2\right)\left(w+2\right). Immultiplika \frac{-w-6}{w\left(w+2\right)} b'\frac{w-2}{w-2}. Immultiplika \frac{w+10}{\left(w-2\right)\left(w+2\right)} b'\frac{w}{w}.
\frac{\left(-w-6\right)\left(w-2\right)+\left(w+10\right)w}{w\left(w-2\right)\left(w+2\right)}
Billi \frac{\left(-w-6\right)\left(w-2\right)}{w\left(w-2\right)\left(w+2\right)} u \frac{\left(w+10\right)w}{w\left(w-2\right)\left(w+2\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{-w^{2}+2w-6w+12+w^{2}+10w}{w\left(w-2\right)\left(w+2\right)}
Agħmel il-multiplikazzjonijiet fi \left(-w-6\right)\left(w-2\right)+\left(w+10\right)w.
\frac{6w+12}{w\left(w-2\right)\left(w+2\right)}
Ikkombina termini simili f'-w^{2}+2w-6w+12+w^{2}+10w.
\frac{6\left(w+2\right)}{w\left(w-2\right)\left(w+2\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{6w+12}{w\left(w-2\right)\left(w+2\right)}.
\frac{6}{w\left(w-2\right)}
Annulla w+2 fin-numeratur u d-denominatur.
\frac{6}{w^{2}-2w}
Espandi w\left(w-2\right).
\frac{2w}{w\left(w+2\right)}-\frac{3\left(w+2\right)}{w\left(w+2\right)}+\frac{w+10}{w^{2}-4}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' w+2 u w huwa w\left(w+2\right). Immultiplika \frac{2}{w+2} b'\frac{w}{w}. Immultiplika \frac{3}{w} b'\frac{w+2}{w+2}.
\frac{2w-3\left(w+2\right)}{w\left(w+2\right)}+\frac{w+10}{w^{2}-4}
Billi \frac{2w}{w\left(w+2\right)} u \frac{3\left(w+2\right)}{w\left(w+2\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{2w-3w-6}{w\left(w+2\right)}+\frac{w+10}{w^{2}-4}
Agħmel il-multiplikazzjonijiet fi 2w-3\left(w+2\right).
\frac{-w-6}{w\left(w+2\right)}+\frac{w+10}{w^{2}-4}
Ikkombina termini simili f'2w-3w-6.
\frac{-w-6}{w\left(w+2\right)}+\frac{w+10}{\left(w-2\right)\left(w+2\right)}
Iffattura w^{2}-4.
\frac{\left(-w-6\right)\left(w-2\right)}{w\left(w-2\right)\left(w+2\right)}+\frac{\left(w+10\right)w}{w\left(w-2\right)\left(w+2\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' w\left(w+2\right) u \left(w-2\right)\left(w+2\right) huwa w\left(w-2\right)\left(w+2\right). Immultiplika \frac{-w-6}{w\left(w+2\right)} b'\frac{w-2}{w-2}. Immultiplika \frac{w+10}{\left(w-2\right)\left(w+2\right)} b'\frac{w}{w}.
\frac{\left(-w-6\right)\left(w-2\right)+\left(w+10\right)w}{w\left(w-2\right)\left(w+2\right)}
Billi \frac{\left(-w-6\right)\left(w-2\right)}{w\left(w-2\right)\left(w+2\right)} u \frac{\left(w+10\right)w}{w\left(w-2\right)\left(w+2\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{-w^{2}+2w-6w+12+w^{2}+10w}{w\left(w-2\right)\left(w+2\right)}
Agħmel il-multiplikazzjonijiet fi \left(-w-6\right)\left(w-2\right)+\left(w+10\right)w.
\frac{6w+12}{w\left(w-2\right)\left(w+2\right)}
Ikkombina termini simili f'-w^{2}+2w-6w+12+w^{2}+10w.
\frac{6\left(w+2\right)}{w\left(w-2\right)\left(w+2\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{6w+12}{w\left(w-2\right)\left(w+2\right)}.
\frac{6}{w\left(w-2\right)}
Annulla w+2 fin-numeratur u d-denominatur.
\frac{6}{w^{2}-2w}
Espandi w\left(w-2\right).