Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{2}{\frac{2}{x+3}+\frac{3\left(x+3\right)}{x+3}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 3 b'\frac{x+3}{x+3}.
\frac{2}{\frac{2+3\left(x+3\right)}{x+3}}
Billi \frac{2}{x+3} u \frac{3\left(x+3\right)}{x+3} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{2}{\frac{2+3x+9}{x+3}}
Agħmel il-multiplikazzjonijiet fi 2+3\left(x+3\right).
\frac{2}{\frac{11+3x}{x+3}}
Ikkombina termini simili f'2+3x+9.
\frac{2\left(x+3\right)}{11+3x}
Iddividi 2 b'\frac{11+3x}{x+3} billi timmultiplika 2 bir-reċiproku ta' \frac{11+3x}{x+3}.
\frac{2x+6}{11+3x}
Uża l-propjetà distributtiva biex timmultiplika 2 b'x+3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{\frac{2}{x+3}+\frac{3\left(x+3\right)}{x+3}})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 3 b'\frac{x+3}{x+3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{\frac{2+3\left(x+3\right)}{x+3}})
Billi \frac{2}{x+3} u \frac{3\left(x+3\right)}{x+3} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{\frac{2+3x+9}{x+3}})
Agħmel il-multiplikazzjonijiet fi 2+3\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{\frac{11+3x}{x+3}})
Ikkombina termini simili f'2+3x+9.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+3\right)}{11+3x})
Iddividi 2 b'\frac{11+3x}{x+3} billi timmultiplika 2 bir-reċiproku ta' \frac{11+3x}{x+3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+6}{11+3x})
Uża l-propjetà distributtiva biex timmultiplika 2 b'x+3.
\frac{\left(3x^{1}+11\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+6)-\left(2x^{1}+6\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}+11)}{\left(3x^{1}+11\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(3x^{1}+11\right)\times 2x^{1-1}-\left(2x^{1}+6\right)\times 3x^{1-1}}{\left(3x^{1}+11\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(3x^{1}+11\right)\times 2x^{0}-\left(2x^{1}+6\right)\times 3x^{0}}{\left(3x^{1}+11\right)^{2}}
Agħmel l-aritmetika.
\frac{3x^{1}\times 2x^{0}+11\times 2x^{0}-\left(2x^{1}\times 3x^{0}+6\times 3x^{0}\right)}{\left(3x^{1}+11\right)^{2}}
Espandi bl-użu ta' propjetà distributtiva.
\frac{3\times 2x^{1}+11\times 2x^{0}-\left(2\times 3x^{1}+6\times 3x^{0}\right)}{\left(3x^{1}+11\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{6x^{1}+22x^{0}-\left(6x^{1}+18x^{0}\right)}{\left(3x^{1}+11\right)^{2}}
Agħmel l-aritmetika.
\frac{6x^{1}+22x^{0}-6x^{1}-18x^{0}}{\left(3x^{1}+11\right)^{2}}
Neħħi l-parenteżi mhux meħtieġa.
\frac{\left(6-6\right)x^{1}+\left(22-18\right)x^{0}}{\left(3x^{1}+11\right)^{2}}
Ikkombina termini simili.
\frac{4x^{0}}{\left(3x^{1}+11\right)^{2}}
Naqqas 6 minn 6 u 18 minn 22.
\frac{4x^{0}}{\left(3x+11\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{4\times 1}{\left(3x+11\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\frac{4}{\left(3x+11\right)^{2}}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.