Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Fattur
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{2\left(\sqrt{2}+2\right)}{\left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right)}+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Irrazzjonalizza d-denominatur tal-\frac{2}{\sqrt{2}-2} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{2}+2.
\frac{2\left(\sqrt{2}+2\right)}{\left(\sqrt{2}\right)^{2}-2^{2}}+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Ikkunsidra li \left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{2}+2\right)}{2-4}+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Ikkwadra \sqrt{2}. Ikkwadra 2.
\frac{2\left(\sqrt{2}+2\right)}{-2}+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Naqqas 4 minn 2 biex tikseb -2.
-\left(\sqrt{2}+2\right)+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Annulla -2 u -2.
-\left(\sqrt{2}+2\right)+\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}-\frac{\sqrt{32}}{2}
Irrazzjonalizza d-denominatur tal-\frac{\sqrt{2}+1}{\sqrt{2}-1} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{2}+1.
-\left(\sqrt{2}+2\right)+\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}-\frac{\sqrt{32}}{2}
Ikkunsidra li \left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\left(\sqrt{2}+2\right)+\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{2-1}-\frac{\sqrt{32}}{2}
Ikkwadra \sqrt{2}. Ikkwadra 1.
-\left(\sqrt{2}+2\right)+\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{1}-\frac{\sqrt{32}}{2}
Naqqas 1 minn 2 biex tikseb 1.
-\left(\sqrt{2}+2\right)+\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)-\frac{\sqrt{32}}{2}
Kwalunkwe ħaġa diviża b'wieħed tagħti riżultat tagħha stess.
-\left(\sqrt{2}+2\right)+\left(\sqrt{2}+1\right)^{2}-\frac{\sqrt{32}}{2}
Immultiplika \sqrt{2}+1 u \sqrt{2}+1 biex tikseb \left(\sqrt{2}+1\right)^{2}.
-\left(\sqrt{2}+2\right)+\left(\sqrt{2}+1\right)^{2}-\frac{4\sqrt{2}}{2}
Iffattura 32=4^{2}\times 2. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{4^{2}\times 2} bħala l-prodott tal-għeruq kwadrati \sqrt{4^{2}}\sqrt{2}. Ħu l-għerq kwadrat ta' 4^{2}.
-\left(\sqrt{2}+2\right)+\left(\sqrt{2}+1\right)^{2}-2\sqrt{2}
Iddividi 4\sqrt{2} b'2 biex tikseb2\sqrt{2}.
-\sqrt{2}-2+\left(\sqrt{2}+1\right)^{2}-2\sqrt{2}
Biex issib l-oppost ta' \sqrt{2}+2, sib l-oppost ta' kull terminu.
-\sqrt{2}-2+\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1-2\sqrt{2}
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(\sqrt{2}+1\right)^{2}.
-\sqrt{2}-2+2+2\sqrt{2}+1-2\sqrt{2}
Il-kwadrat ta' \sqrt{2} huwa 2.
-\sqrt{2}-2+3+2\sqrt{2}-2\sqrt{2}
Żid 2 u 1 biex tikseb 3.
-\sqrt{2}+1+2\sqrt{2}-2\sqrt{2}
Żid -2 u 3 biex tikseb 1.
\sqrt{2}+1-2\sqrt{2}
Ikkombina -\sqrt{2} u 2\sqrt{2} biex tikseb \sqrt{2}.
-\sqrt{2}+1
Ikkombina \sqrt{2} u -2\sqrt{2} biex tikseb -\sqrt{2}.