Aqbeż għall-kontenut ewlieni
Solvi għal b
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{2\times 2}{\sqrt{2}}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Iddividi 2 b'\frac{\sqrt{2}}{2} billi timmultiplika 2 bir-reċiproku ta' \frac{\sqrt{2}}{2}.
\frac{4}{\sqrt{2}}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Immultiplika 2 u 2 biex tikseb 4.
\frac{4\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Irrazzjonalizza d-denominatur tal-\frac{4}{\sqrt{2}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{2}.
\frac{4\sqrt{2}}{2}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Il-kwadrat ta' \sqrt{2} huwa 2.
2\sqrt{2}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Iddividi 4\sqrt{2} b'2 biex tikseb2\sqrt{2}.
2\sqrt{2}=\frac{b\times 4}{\sqrt{2}+\sqrt{6}}
Iddividi b b'\frac{\sqrt{2}+\sqrt{6}}{4} billi timmultiplika b bir-reċiproku ta' \frac{\sqrt{2}+\sqrt{6}}{4}.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right)}
Irrazzjonalizza d-denominatur tal-\frac{b\times 4}{\sqrt{2}+\sqrt{6}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{2}-\sqrt{6}.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Ikkunsidra li \left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{2-6}
Ikkwadra \sqrt{2}. Ikkwadra \sqrt{6}.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{-4}
Naqqas 6 minn 2 biex tikseb -4.
2\sqrt{2}=b\left(-1\right)\left(\sqrt{2}-\sqrt{6}\right)
Annulla -4 u -4.
2\sqrt{2}=-b\sqrt{2}+b\sqrt{6}
Uża l-propjetà distributtiva biex timmultiplika b\left(-1\right) b'\sqrt{2}-\sqrt{6}.
-b\sqrt{2}+b\sqrt{6}=2\sqrt{2}
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
\left(-\sqrt{2}+\sqrt{6}\right)b=2\sqrt{2}
Ikkombina t-termini kollha li fihom b.
\left(\sqrt{6}-\sqrt{2}\right)b=2\sqrt{2}
L-ekwazzjoni hija f'forma standard.
\frac{\left(\sqrt{6}-\sqrt{2}\right)b}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{2}}{\sqrt{6}-\sqrt{2}}
Iddividi ż-żewġ naħat b'-\sqrt{2}+\sqrt{6}.
b=\frac{2\sqrt{2}}{\sqrt{6}-\sqrt{2}}
Meta tiddividi b'-\sqrt{2}+\sqrt{6} titneħħa l-multiplikazzjoni b'-\sqrt{2}+\sqrt{6}.
b=\sqrt{3}+1
Iddividi 2\sqrt{2} b'-\sqrt{2}+\sqrt{6}.