Evalwa
\frac{4}{x}
Iddifferenzja w.r.t. x
-\frac{4}{x^{2}}
Graff
Sehem
Ikkupjat fuq il-klibbord
\frac{12}{x\left(x+2\right)}-\frac{2}{x}+\frac{6}{x+2}
Iffattura x^{2}+2x.
\frac{12}{x\left(x+2\right)}-\frac{2\left(x+2\right)}{x\left(x+2\right)}+\frac{6}{x+2}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x\left(x+2\right) u x huwa x\left(x+2\right). Immultiplika \frac{2}{x} b'\frac{x+2}{x+2}.
\frac{12-2\left(x+2\right)}{x\left(x+2\right)}+\frac{6}{x+2}
Billi \frac{12}{x\left(x+2\right)} u \frac{2\left(x+2\right)}{x\left(x+2\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{12-2x-4}{x\left(x+2\right)}+\frac{6}{x+2}
Agħmel il-multiplikazzjonijiet fi 12-2\left(x+2\right).
\frac{8-2x}{x\left(x+2\right)}+\frac{6}{x+2}
Ikkombina termini simili f'12-2x-4.
\frac{8-2x}{x\left(x+2\right)}+\frac{6x}{x\left(x+2\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x\left(x+2\right) u x+2 huwa x\left(x+2\right). Immultiplika \frac{6}{x+2} b'\frac{x}{x}.
\frac{8-2x+6x}{x\left(x+2\right)}
Billi \frac{8-2x}{x\left(x+2\right)} u \frac{6x}{x\left(x+2\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{8+4x}{x\left(x+2\right)}
Ikkombina termini simili f'8-2x+6x.
\frac{4\left(x+2\right)}{x\left(x+2\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{8+4x}{x\left(x+2\right)}.
\frac{4}{x}
Annulla x+2 fin-numeratur u d-denominatur.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12}{x\left(x+2\right)}-\frac{2}{x}+\frac{6}{x+2})
Iffattura x^{2}+2x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12}{x\left(x+2\right)}-\frac{2\left(x+2\right)}{x\left(x+2\right)}+\frac{6}{x+2})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x\left(x+2\right) u x huwa x\left(x+2\right). Immultiplika \frac{2}{x} b'\frac{x+2}{x+2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12-2\left(x+2\right)}{x\left(x+2\right)}+\frac{6}{x+2})
Billi \frac{12}{x\left(x+2\right)} u \frac{2\left(x+2\right)}{x\left(x+2\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12-2x-4}{x\left(x+2\right)}+\frac{6}{x+2})
Agħmel il-multiplikazzjonijiet fi 12-2\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8-2x}{x\left(x+2\right)}+\frac{6}{x+2})
Ikkombina termini simili f'12-2x-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8-2x}{x\left(x+2\right)}+\frac{6x}{x\left(x+2\right)})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x\left(x+2\right) u x+2 huwa x\left(x+2\right). Immultiplika \frac{6}{x+2} b'\frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8-2x+6x}{x\left(x+2\right)})
Billi \frac{8-2x}{x\left(x+2\right)} u \frac{6x}{x\left(x+2\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8+4x}{x\left(x+2\right)})
Ikkombina termini simili f'8-2x+6x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\left(x+2\right)}{x\left(x+2\right)})
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{8+4x}{x\left(x+2\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4}{x})
Annulla x+2 fin-numeratur u d-denominatur.
-4x^{-1-1}
Id-derivattiv ta' ax^{n} huwa nax^{n-1}.
-4x^{-2}
Naqqas 1 minn -1.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}