Aqbeż għall-kontenut ewlieni
Solvi għal A
Tick mark Image
Solvi għal B
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{1}{1001}\times 1003=1001A+1002B+\frac{1002}{1001}C
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'1003002, l-inqas denominatur komuni ta' 1002,1001.
\frac{1003}{1001}=1001A+1002B+\frac{1002}{1001}C
Immultiplika \frac{1}{1001} u 1003 biex tikseb \frac{1003}{1001}.
1001A+1002B+\frac{1002}{1001}C=\frac{1003}{1001}
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
1001A+\frac{1002}{1001}C=\frac{1003}{1001}-1002B
Naqqas 1002B miż-żewġ naħat.
1001A=\frac{1003}{1001}-1002B-\frac{1002}{1001}C
Naqqas \frac{1002}{1001}C miż-żewġ naħat.
1001A=-\frac{1002C}{1001}-1002B+\frac{1003}{1001}
L-ekwazzjoni hija f'forma standard.
\frac{1001A}{1001}=\frac{-\frac{1002C}{1001}-1002B+\frac{1003}{1001}}{1001}
Iddividi ż-żewġ naħat b'1001.
A=\frac{-\frac{1002C}{1001}-1002B+\frac{1003}{1001}}{1001}
Meta tiddividi b'1001 titneħħa l-multiplikazzjoni b'1001.
A=-\frac{1002B}{1001}-\frac{1002C}{1002001}+\frac{1003}{1002001}
Iddividi \frac{1003}{1001}-1002B-\frac{1002C}{1001} b'1001.
\frac{1}{1001}\times 1003=1001A+1002B+\frac{1002}{1001}C
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'1003002, l-inqas denominatur komuni ta' 1002,1001.
\frac{1003}{1001}=1001A+1002B+\frac{1002}{1001}C
Immultiplika \frac{1}{1001} u 1003 biex tikseb \frac{1003}{1001}.
1001A+1002B+\frac{1002}{1001}C=\frac{1003}{1001}
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
1002B+\frac{1002}{1001}C=\frac{1003}{1001}-1001A
Naqqas 1001A miż-żewġ naħat.
1002B=\frac{1003}{1001}-1001A-\frac{1002}{1001}C
Naqqas \frac{1002}{1001}C miż-żewġ naħat.
1002B=-\frac{1002C}{1001}-1001A+\frac{1003}{1001}
L-ekwazzjoni hija f'forma standard.
\frac{1002B}{1002}=\frac{-\frac{1002C}{1001}-1001A+\frac{1003}{1001}}{1002}
Iddividi ż-żewġ naħat b'1002.
B=\frac{-\frac{1002C}{1001}-1001A+\frac{1003}{1001}}{1002}
Meta tiddividi b'1002 titneħħa l-multiplikazzjoni b'1002.
B=-\frac{C}{1001}-\frac{1001A}{1002}+\frac{1003}{1003002}
Iddividi \frac{1003}{1001}-1001A-\frac{1002C}{1001} b'1002.