Solvi għal A
A=-\frac{1002B}{1001}-\frac{1002C}{1002001}+\frac{1003}{1002001}
Solvi għal B
B=-\frac{C}{1001}-\frac{1001A}{1002}+\frac{1003}{1003002}
Sehem
Ikkupjat fuq il-klibbord
\frac{1}{1001}\times 1003=1001A+1002B+\frac{1002}{1001}C
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'1003002, l-inqas denominatur komuni ta' 1002,1001.
\frac{1003}{1001}=1001A+1002B+\frac{1002}{1001}C
Immultiplika \frac{1}{1001} u 1003 biex tikseb \frac{1003}{1001}.
1001A+1002B+\frac{1002}{1001}C=\frac{1003}{1001}
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
1001A+\frac{1002}{1001}C=\frac{1003}{1001}-1002B
Naqqas 1002B miż-żewġ naħat.
1001A=\frac{1003}{1001}-1002B-\frac{1002}{1001}C
Naqqas \frac{1002}{1001}C miż-żewġ naħat.
1001A=-\frac{1002C}{1001}-1002B+\frac{1003}{1001}
L-ekwazzjoni hija f'forma standard.
\frac{1001A}{1001}=\frac{-\frac{1002C}{1001}-1002B+\frac{1003}{1001}}{1001}
Iddividi ż-żewġ naħat b'1001.
A=\frac{-\frac{1002C}{1001}-1002B+\frac{1003}{1001}}{1001}
Meta tiddividi b'1001 titneħħa l-multiplikazzjoni b'1001.
A=-\frac{1002B}{1001}-\frac{1002C}{1002001}+\frac{1003}{1002001}
Iddividi \frac{1003}{1001}-1002B-\frac{1002C}{1001} b'1001.
\frac{1}{1001}\times 1003=1001A+1002B+\frac{1002}{1001}C
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'1003002, l-inqas denominatur komuni ta' 1002,1001.
\frac{1003}{1001}=1001A+1002B+\frac{1002}{1001}C
Immultiplika \frac{1}{1001} u 1003 biex tikseb \frac{1003}{1001}.
1001A+1002B+\frac{1002}{1001}C=\frac{1003}{1001}
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
1002B+\frac{1002}{1001}C=\frac{1003}{1001}-1001A
Naqqas 1001A miż-żewġ naħat.
1002B=\frac{1003}{1001}-1001A-\frac{1002}{1001}C
Naqqas \frac{1002}{1001}C miż-żewġ naħat.
1002B=-\frac{1002C}{1001}-1001A+\frac{1003}{1001}
L-ekwazzjoni hija f'forma standard.
\frac{1002B}{1002}=\frac{-\frac{1002C}{1001}-1001A+\frac{1003}{1001}}{1002}
Iddividi ż-żewġ naħat b'1002.
B=\frac{-\frac{1002C}{1001}-1001A+\frac{1003}{1001}}{1002}
Meta tiddividi b'1002 titneħħa l-multiplikazzjoni b'1002.
B=-\frac{C}{1001}-\frac{1001A}{1002}+\frac{1003}{1003002}
Iddividi \frac{1003}{1001}-1001A-\frac{1002C}{1001} b'1002.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}