Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{-2-4\sqrt{5}}{3-\sqrt{5}-\sqrt{5}+2}
Naqqas 3 minn 1 biex tikseb -2.
\frac{-2-4\sqrt{5}}{3-2\sqrt{5}+2}
Ikkombina -\sqrt{5} u -\sqrt{5} biex tikseb -2\sqrt{5}.
\frac{-2-4\sqrt{5}}{5-2\sqrt{5}}
Żid 3 u 2 biex tikseb 5.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{\left(5-2\sqrt{5}\right)\left(5+2\sqrt{5}\right)}
Irrazzjonalizza d-denominatur tal-\frac{-2-4\sqrt{5}}{5-2\sqrt{5}} billi timmultiplika in-numeratur u d-denominatur mill-5+2\sqrt{5}.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{5^{2}-\left(-2\sqrt{5}\right)^{2}}
Ikkunsidra li \left(5-2\sqrt{5}\right)\left(5+2\sqrt{5}\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{25-\left(-2\sqrt{5}\right)^{2}}
Ikkalkula 5 bil-power ta' 2 u tikseb 25.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{25-\left(-2\right)^{2}\left(\sqrt{5}\right)^{2}}
Espandi \left(-2\sqrt{5}\right)^{2}.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{25-4\left(\sqrt{5}\right)^{2}}
Ikkalkula -2 bil-power ta' 2 u tikseb 4.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{25-4\times 5}
Il-kwadrat ta' \sqrt{5} huwa 5.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{25-20}
Immultiplika 4 u 5 biex tikseb 20.
\frac{\left(-2-4\sqrt{5}\right)\left(5+2\sqrt{5}\right)}{5}
Naqqas 20 minn 25 biex tikseb 5.
\frac{-10-4\sqrt{5}-20\sqrt{5}-8\left(\sqrt{5}\right)^{2}}{5}
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' -2-4\sqrt{5} b'kull terminu ta' 5+2\sqrt{5}.
\frac{-10-24\sqrt{5}-8\left(\sqrt{5}\right)^{2}}{5}
Ikkombina -4\sqrt{5} u -20\sqrt{5} biex tikseb -24\sqrt{5}.
\frac{-10-24\sqrt{5}-8\times 5}{5}
Il-kwadrat ta' \sqrt{5} huwa 5.
\frac{-10-24\sqrt{5}-40}{5}
Immultiplika -8 u 5 biex tikseb -40.
\frac{-50-24\sqrt{5}}{5}
Naqqas 40 minn -10 biex tikseb -50.