Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{d}{x^{2}-2x+5}x
Esprimi \frac{1}{x^{2}-2x+5}d bħala frazzjoni waħda.
\frac{dx}{x^{2}-2x+5}
Esprimi \frac{d}{x^{2}-2x+5}x bħala frazzjoni waħda.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{d}{x^{2}-2x+5}x)
Esprimi \frac{1}{x^{2}-2x+5}d bħala frazzjoni waħda.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{dx}{x^{2}-2x+5})
Esprimi \frac{d}{x^{2}-2x+5}x bħala frazzjoni waħda.
\frac{\left(x^{2}-2x^{1}+5\right)\frac{\mathrm{d}}{\mathrm{d}x}(dx^{1})-dx^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x^{1}+5)}{\left(x^{2}-2x^{1}+5\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(x^{2}-2x^{1}+5\right)dx^{1-1}-dx^{1}\left(2x^{2-1}-2x^{1-1}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(x^{2}-2x^{1}+5\right)dx^{0}-dx^{1}\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
Issimplifika.
\frac{x^{2}dx^{0}-2x^{1}dx^{0}+5dx^{0}-dx^{1}\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
Immultiplika x^{2}-2x^{1}+5 b'dx^{0}.
\frac{x^{2}dx^{0}-2x^{1}dx^{0}+5dx^{0}-\left(dx^{1}\times 2x^{1}+dx^{1}\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
Immultiplika dx^{1} b'2x^{1}-2x^{0}.
\frac{dx^{2}-2dx^{1}+5dx^{0}-\left(d\times 2x^{1+1}+d\left(-2\right)x^{1}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{dx^{2}+\left(-2d\right)x^{1}+5dx^{0}-\left(2dx^{2}+\left(-2d\right)x^{1}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
Issimplifika.
\frac{\left(-d\right)x^{2}+5dx^{0}}{\left(x^{2}-2x^{1}+5\right)^{2}}
Ikkombina termini simili.
\frac{\left(-d\right)x^{2}+5dx^{0}}{\left(x^{2}-2x+5\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{\left(-d\right)x^{2}+5d\times 1}{\left(x^{2}-2x+5\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\frac{\left(-d\right)x^{2}+5d}{\left(x^{2}-2x+5\right)^{2}}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.