Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Iffattura x^{2}+4x+3. Iffattura x^{2}+8x+15.
\frac{x+5}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{x+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(x+1\right)\left(x+3\right) u \left(x+3\right)\left(x+5\right) huwa \left(x+1\right)\left(x+3\right)\left(x+5\right). Immultiplika \frac{1}{\left(x+1\right)\left(x+3\right)} b'\frac{x+5}{x+5}. Immultiplika \frac{1}{\left(x+3\right)\left(x+5\right)} b'\frac{x+1}{x+1}.
\frac{x+5+x+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Billi \frac{x+5}{\left(x+1\right)\left(x+3\right)\left(x+5\right)} u \frac{x+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{2x+6}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Ikkombina termini simili f'x+5+x+1.
\frac{2\left(x+3\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{2x+6}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}.
\frac{2}{\left(x+1\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Annulla x+3 fin-numeratur u d-denominatur.
\frac{2}{\left(x+1\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}
Iffattura x^{2}+12x+35.
\frac{2\left(x+7\right)}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}+\frac{x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(x+1\right)\left(x+5\right) u \left(x+5\right)\left(x+7\right) huwa \left(x+1\right)\left(x+5\right)\left(x+7\right). Immultiplika \frac{2}{\left(x+1\right)\left(x+5\right)} b'\frac{x+7}{x+7}. Immultiplika \frac{1}{\left(x+5\right)\left(x+7\right)} b'\frac{x+1}{x+1}.
\frac{2\left(x+7\right)+x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Billi \frac{2\left(x+7\right)}{\left(x+1\right)\left(x+5\right)\left(x+7\right)} u \frac{x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{2x+14+x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Agħmel il-multiplikazzjonijiet fi 2\left(x+7\right)+x+1.
\frac{3x+15}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Ikkombina termini simili f'2x+14+x+1.
\frac{3\left(x+5\right)}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{3x+15}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}.
\frac{3}{\left(x+1\right)\left(x+7\right)}
Annulla x+5 fin-numeratur u d-denominatur.
\frac{3}{x^{2}+8x+7}
Espandi \left(x+1\right)\left(x+7\right).