Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{1}{x+3}-\frac{x^{2}-7}{2\left(x+3\right)}
Iffattura 2x+6.
\frac{2}{2\left(x+3\right)}-\frac{x^{2}-7}{2\left(x+3\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x+3 u 2\left(x+3\right) huwa 2\left(x+3\right). Immultiplika \frac{1}{x+3} b'\frac{2}{2}.
\frac{2-\left(x^{2}-7\right)}{2\left(x+3\right)}
Billi \frac{2}{2\left(x+3\right)} u \frac{x^{2}-7}{2\left(x+3\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{2-x^{2}+7}{2\left(x+3\right)}
Agħmel il-multiplikazzjonijiet fi 2-\left(x^{2}-7\right).
\frac{9-x^{2}}{2\left(x+3\right)}
Ikkombina termini simili f'2-x^{2}+7.
\frac{\left(x-3\right)\left(-x-3\right)}{2\left(x+3\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{9-x^{2}}{2\left(x+3\right)}.
\frac{-\left(x-3\right)\left(x+3\right)}{2\left(x+3\right)}
Estratta l-sinjal negattiv fi -3-x.
\frac{-\left(x-3\right)}{2}
Annulla x+3 fin-numeratur u d-denominatur.
\frac{-x+3}{2}
Biex issib l-oppost ta' x-3, sib l-oppost ta' kull terminu.
\frac{1}{x+3}-\frac{x^{2}-7}{2\left(x+3\right)}
Iffattura 2x+6.
\frac{2}{2\left(x+3\right)}-\frac{x^{2}-7}{2\left(x+3\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x+3 u 2\left(x+3\right) huwa 2\left(x+3\right). Immultiplika \frac{1}{x+3} b'\frac{2}{2}.
\frac{2-\left(x^{2}-7\right)}{2\left(x+3\right)}
Billi \frac{2}{2\left(x+3\right)} u \frac{x^{2}-7}{2\left(x+3\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{2-x^{2}+7}{2\left(x+3\right)}
Agħmel il-multiplikazzjonijiet fi 2-\left(x^{2}-7\right).
\frac{9-x^{2}}{2\left(x+3\right)}
Ikkombina termini simili f'2-x^{2}+7.
\frac{\left(x-3\right)\left(-x-3\right)}{2\left(x+3\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{9-x^{2}}{2\left(x+3\right)}.
\frac{-\left(x-3\right)\left(x+3\right)}{2\left(x+3\right)}
Estratta l-sinjal negattiv fi -3-x.
\frac{-\left(x-3\right)}{2}
Annulla x+3 fin-numeratur u d-denominatur.
\frac{-x+3}{2}
Biex issib l-oppost ta' x-3, sib l-oppost ta' kull terminu.