Aqbeż għall-kontenut ewlieni
Solvi għal x (complex solution)
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{1}{5}x-3=5x\times \frac{1}{10}x+5x\times \frac{1}{10}
Uża l-propjetà distributtiva biex timmultiplika 5x b'\frac{1}{10}x+\frac{1}{10}.
\frac{1}{5}x-3=5x^{2}\times \frac{1}{10}+5x\times \frac{1}{10}
Immultiplika x u x biex tikseb x^{2}.
\frac{1}{5}x-3=\frac{5}{10}x^{2}+5x\times \frac{1}{10}
Immultiplika 5 u \frac{1}{10} biex tikseb \frac{5}{10}.
\frac{1}{5}x-3=\frac{1}{2}x^{2}+5x\times \frac{1}{10}
Naqqas il-frazzjoni \frac{5}{10} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 5.
\frac{1}{5}x-3=\frac{1}{2}x^{2}+\frac{5}{10}x
Immultiplika 5 u \frac{1}{10} biex tikseb \frac{5}{10}.
\frac{1}{5}x-3=\frac{1}{2}x^{2}+\frac{1}{2}x
Naqqas il-frazzjoni \frac{5}{10} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 5.
\frac{1}{5}x-3-\frac{1}{2}x^{2}=\frac{1}{2}x
Naqqas \frac{1}{2}x^{2} miż-żewġ naħat.
\frac{1}{5}x-3-\frac{1}{2}x^{2}-\frac{1}{2}x=0
Naqqas \frac{1}{2}x miż-żewġ naħat.
-\frac{3}{10}x-3-\frac{1}{2}x^{2}=0
Ikkombina \frac{1}{5}x u -\frac{1}{2}x biex tikseb -\frac{3}{10}x.
-\frac{1}{2}x^{2}-\frac{3}{10}x-3=0
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti permezz tal-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Il-formula kwadratika tagħti żewġ soluzzjonijiet, waħda meta ± hija addizzjoni u waħda meta hija tnaqqis.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\left(-\frac{3}{10}\right)^{2}-4\left(-\frac{1}{2}\right)\left(-3\right)}}{2\left(-\frac{1}{2}\right)}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi -\frac{1}{2} għal a, -\frac{3}{10} għal b, u -3 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{9}{100}-4\left(-\frac{1}{2}\right)\left(-3\right)}}{2\left(-\frac{1}{2}\right)}
Ikkwadra -\frac{3}{10} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{9}{100}+2\left(-3\right)}}{2\left(-\frac{1}{2}\right)}
Immultiplika -4 b'-\frac{1}{2}.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{9}{100}-6}}{2\left(-\frac{1}{2}\right)}
Immultiplika 2 b'-3.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{-\frac{591}{100}}}{2\left(-\frac{1}{2}\right)}
Żid \frac{9}{100} ma' -6.
x=\frac{-\left(-\frac{3}{10}\right)±\frac{\sqrt{591}i}{10}}{2\left(-\frac{1}{2}\right)}
Ħu l-għerq kwadrat ta' -\frac{591}{100}.
x=\frac{\frac{3}{10}±\frac{\sqrt{591}i}{10}}{2\left(-\frac{1}{2}\right)}
L-oppost ta' -\frac{3}{10} huwa \frac{3}{10}.
x=\frac{\frac{3}{10}±\frac{\sqrt{591}i}{10}}{-1}
Immultiplika 2 b'-\frac{1}{2}.
x=\frac{3+\sqrt{591}i}{-10}
Issa solvi l-ekwazzjoni x=\frac{\frac{3}{10}±\frac{\sqrt{591}i}{10}}{-1} fejn ± hija plus. Żid \frac{3}{10} ma' \frac{i\sqrt{591}}{10}.
x=\frac{-\sqrt{591}i-3}{10}
Iddividi \frac{3+i\sqrt{591}}{10} b'-1.
x=\frac{-\sqrt{591}i+3}{-10}
Issa solvi l-ekwazzjoni x=\frac{\frac{3}{10}±\frac{\sqrt{591}i}{10}}{-1} fejn ± hija minus. Naqqas \frac{i\sqrt{591}}{10} minn \frac{3}{10}.
x=\frac{-3+\sqrt{591}i}{10}
Iddividi \frac{3-i\sqrt{591}}{10} b'-1.
x=\frac{-\sqrt{591}i-3}{10} x=\frac{-3+\sqrt{591}i}{10}
L-ekwazzjoni issa solvuta.
\frac{1}{5}x-3=5x\times \frac{1}{10}x+5x\times \frac{1}{10}
Uża l-propjetà distributtiva biex timmultiplika 5x b'\frac{1}{10}x+\frac{1}{10}.
\frac{1}{5}x-3=5x^{2}\times \frac{1}{10}+5x\times \frac{1}{10}
Immultiplika x u x biex tikseb x^{2}.
\frac{1}{5}x-3=\frac{5}{10}x^{2}+5x\times \frac{1}{10}
Immultiplika 5 u \frac{1}{10} biex tikseb \frac{5}{10}.
\frac{1}{5}x-3=\frac{1}{2}x^{2}+5x\times \frac{1}{10}
Naqqas il-frazzjoni \frac{5}{10} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 5.
\frac{1}{5}x-3=\frac{1}{2}x^{2}+\frac{5}{10}x
Immultiplika 5 u \frac{1}{10} biex tikseb \frac{5}{10}.
\frac{1}{5}x-3=\frac{1}{2}x^{2}+\frac{1}{2}x
Naqqas il-frazzjoni \frac{5}{10} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 5.
\frac{1}{5}x-3-\frac{1}{2}x^{2}=\frac{1}{2}x
Naqqas \frac{1}{2}x^{2} miż-żewġ naħat.
\frac{1}{5}x-3-\frac{1}{2}x^{2}-\frac{1}{2}x=0
Naqqas \frac{1}{2}x miż-żewġ naħat.
-\frac{3}{10}x-3-\frac{1}{2}x^{2}=0
Ikkombina \frac{1}{5}x u -\frac{1}{2}x biex tikseb -\frac{3}{10}x.
-\frac{3}{10}x-\frac{1}{2}x^{2}=3
Żid 3 maż-żewġ naħat. Xi ħaġa plus żero jirriżulta f'dan in-numru stess.
-\frac{1}{2}x^{2}-\frac{3}{10}x=3
Ekwazzjonijiet kwadratiċi bħal din jistgħu jiġu solvuti billi tikkompleta l-kwadrat. Sabiex tikkompleta l-kwadrat, l-ekwazzjoni l-ewwel trid tkun fil-forma x^{2}+bx=c.
\frac{-\frac{1}{2}x^{2}-\frac{3}{10}x}{-\frac{1}{2}}=\frac{3}{-\frac{1}{2}}
Immultiplika ż-żewġ naħat b'-2.
x^{2}+\left(-\frac{\frac{3}{10}}{-\frac{1}{2}}\right)x=\frac{3}{-\frac{1}{2}}
Meta tiddividi b'-\frac{1}{2} titneħħa l-multiplikazzjoni b'-\frac{1}{2}.
x^{2}+\frac{3}{5}x=\frac{3}{-\frac{1}{2}}
Iddividi -\frac{3}{10} b'-\frac{1}{2} billi timmultiplika -\frac{3}{10} bir-reċiproku ta' -\frac{1}{2}.
x^{2}+\frac{3}{5}x=-6
Iddividi 3 b'-\frac{1}{2} billi timmultiplika 3 bir-reċiproku ta' -\frac{1}{2}.
x^{2}+\frac{3}{5}x+\left(\frac{3}{10}\right)^{2}=-6+\left(\frac{3}{10}\right)^{2}
Iddividi \frac{3}{5}, il-koeffiċjent tat-terminu x, b'2 biex tikseb \frac{3}{10}. Imbagħad żid il-kwadru ta' \frac{3}{10} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}+\frac{3}{5}x+\frac{9}{100}=-6+\frac{9}{100}
Ikkwadra \frac{3}{10} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x^{2}+\frac{3}{5}x+\frac{9}{100}=-\frac{591}{100}
Żid -6 ma' \frac{9}{100}.
\left(x+\frac{3}{10}\right)^{2}=-\frac{591}{100}
Fattur x^{2}+\frac{3}{5}x+\frac{9}{100}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{10}\right)^{2}}=\sqrt{-\frac{591}{100}}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x+\frac{3}{10}=\frac{\sqrt{591}i}{10} x+\frac{3}{10}=-\frac{\sqrt{591}i}{10}
Issimplifika.
x=\frac{-3+\sqrt{591}i}{10} x=\frac{-\sqrt{591}i-3}{10}
Naqqas \frac{3}{10} miż-żewġ naħat tal-ekwazzjoni.