Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{4n^{2}}{4n^{2}\left(2n-1\right)^{2}}+\frac{\left(2n-1\right)^{2}}{4n^{2}\left(2n-1\right)^{2}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(2n-1\right)^{2} u 4n^{2} huwa 4n^{2}\left(2n-1\right)^{2}. Immultiplika \frac{1}{\left(2n-1\right)^{2}} b'\frac{4n^{2}}{4n^{2}}. Immultiplika \frac{1}{4n^{2}} b'\frac{\left(2n-1\right)^{2}}{\left(2n-1\right)^{2}}.
\frac{4n^{2}+\left(2n-1\right)^{2}}{4n^{2}\left(2n-1\right)^{2}}
Billi \frac{4n^{2}}{4n^{2}\left(2n-1\right)^{2}} u \frac{\left(2n-1\right)^{2}}{4n^{2}\left(2n-1\right)^{2}} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{4n^{2}+4n^{2}-4n+1}{4n^{2}\left(2n-1\right)^{2}}
Agħmel il-multiplikazzjonijiet fi 4n^{2}+\left(2n-1\right)^{2}.
\frac{8n^{2}-4n+1}{4n^{2}\left(2n-1\right)^{2}}
Ikkombina termini simili f'4n^{2}+4n^{2}-4n+1.
\frac{8n^{2}-4n+1}{16n^{4}-16n^{3}+4n^{2}}
Espandi 4n^{2}\left(2n-1\right)^{2}.
\frac{4n^{2}}{4n^{2}\left(2n-1\right)^{2}}+\frac{\left(2n-1\right)^{2}}{4n^{2}\left(2n-1\right)^{2}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(2n-1\right)^{2} u 4n^{2} huwa 4n^{2}\left(2n-1\right)^{2}. Immultiplika \frac{1}{\left(2n-1\right)^{2}} b'\frac{4n^{2}}{4n^{2}}. Immultiplika \frac{1}{4n^{2}} b'\frac{\left(2n-1\right)^{2}}{\left(2n-1\right)^{2}}.
\frac{4n^{2}+\left(2n-1\right)^{2}}{4n^{2}\left(2n-1\right)^{2}}
Billi \frac{4n^{2}}{4n^{2}\left(2n-1\right)^{2}} u \frac{\left(2n-1\right)^{2}}{4n^{2}\left(2n-1\right)^{2}} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{4n^{2}+4n^{2}-4n+1}{4n^{2}\left(2n-1\right)^{2}}
Agħmel il-multiplikazzjonijiet fi 4n^{2}+\left(2n-1\right)^{2}.
\frac{8n^{2}-4n+1}{4n^{2}\left(2n-1\right)^{2}}
Ikkombina termini simili f'4n^{2}+4n^{2}-4n+1.
\frac{8n^{2}-4n+1}{16n^{4}-16n^{3}+4n^{2}}
Espandi 4n^{2}\left(2n-1\right)^{2}.