Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Parti Reali
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{1^{80}+i^{12}-3i^{26}+2i^{14}}{9+2i-1^{44}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom. Żid 35 u 9 biex tikseb 44.
\frac{1+i^{12}-3i^{26}+2i^{14}}{9+2i-1^{44}}
Ikkalkula 1 bil-power ta' 80 u tikseb 1.
\frac{1+1-3i^{26}+2i^{14}}{9+2i-1^{44}}
Ikkalkula i bil-power ta' 12 u tikseb 1.
\frac{2-3i^{26}+2i^{14}}{9+2i-1^{44}}
Żid 1 u 1 biex tikseb 2.
\frac{2-3\left(-1\right)+2i^{14}}{9+2i-1^{44}}
Ikkalkula i bil-power ta' 26 u tikseb -1.
\frac{2-\left(-3\right)+2i^{14}}{9+2i-1^{44}}
Immultiplika 3 u -1 biex tikseb -3.
\frac{2+3+2i^{14}}{9+2i-1^{44}}
L-oppost ta' -3 huwa 3.
\frac{5+2i^{14}}{9+2i-1^{44}}
Żid 2 u 3 biex tikseb 5.
\frac{5+2\left(-1\right)}{9+2i-1^{44}}
Ikkalkula i bil-power ta' 14 u tikseb -1.
\frac{5-2}{9+2i-1^{44}}
Immultiplika 2 u -1 biex tikseb -2.
\frac{3}{9+2i-1^{44}}
Naqqas 2 minn 5 biex tikseb 3.
\frac{3}{9+2i-1}
Ikkalkula 1 bil-power ta' 44 u tikseb 1.
\frac{3}{8+2i}
Naqqas 1 minn 9+2i biex tikseb 8+2i.
\frac{3\left(8-2i\right)}{\left(8+2i\right)\left(8-2i\right)}
Immultiplika kemm in-numeratur u d-denominatur bil-konjugat kumpless tad-denominatur, 8-2i.
\frac{24-6i}{68}
Agħmel il-multiplikazzjonijiet fi \frac{3\left(8-2i\right)}{\left(8+2i\right)\left(8-2i\right)}.
\frac{6}{17}-\frac{3}{34}i
Iddividi 24-6i b'68 biex tikseb\frac{6}{17}-\frac{3}{34}i.
Re(\frac{1^{80}+i^{12}-3i^{26}+2i^{14}}{9+2i-1^{44}})
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom. Żid 35 u 9 biex tikseb 44.
Re(\frac{1+i^{12}-3i^{26}+2i^{14}}{9+2i-1^{44}})
Ikkalkula 1 bil-power ta' 80 u tikseb 1.
Re(\frac{1+1-3i^{26}+2i^{14}}{9+2i-1^{44}})
Ikkalkula i bil-power ta' 12 u tikseb 1.
Re(\frac{2-3i^{26}+2i^{14}}{9+2i-1^{44}})
Żid 1 u 1 biex tikseb 2.
Re(\frac{2-3\left(-1\right)+2i^{14}}{9+2i-1^{44}})
Ikkalkula i bil-power ta' 26 u tikseb -1.
Re(\frac{2-\left(-3\right)+2i^{14}}{9+2i-1^{44}})
Immultiplika 3 u -1 biex tikseb -3.
Re(\frac{2+3+2i^{14}}{9+2i-1^{44}})
L-oppost ta' -3 huwa 3.
Re(\frac{5+2i^{14}}{9+2i-1^{44}})
Żid 2 u 3 biex tikseb 5.
Re(\frac{5+2\left(-1\right)}{9+2i-1^{44}})
Ikkalkula i bil-power ta' 14 u tikseb -1.
Re(\frac{5-2}{9+2i-1^{44}})
Immultiplika 2 u -1 biex tikseb -2.
Re(\frac{3}{9+2i-1^{44}})
Naqqas 2 minn 5 biex tikseb 3.
Re(\frac{3}{9+2i-1})
Ikkalkula 1 bil-power ta' 44 u tikseb 1.
Re(\frac{3}{8+2i})
Naqqas 1 minn 9+2i biex tikseb 8+2i.
Re(\frac{3\left(8-2i\right)}{\left(8+2i\right)\left(8-2i\right)})
Immultiplika kemm in-numeratur u d-denominatur ta' \frac{3}{8+2i} bil-konjugat kumpless tad-denominatur, 8-2i.
Re(\frac{24-6i}{68})
Agħmel il-multiplikazzjonijiet fi \frac{3\left(8-2i\right)}{\left(8+2i\right)\left(8-2i\right)}.
Re(\frac{6}{17}-\frac{3}{34}i)
Iddividi 24-6i b'68 biex tikseb\frac{6}{17}-\frac{3}{34}i.
\frac{6}{17}
Il-parti reali ta' \frac{6}{17}-\frac{3}{34}i hija \frac{6}{17}.