Aqbeż għall-kontenut ewlieni
Solvi għal x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

2\left(x+1\right)\left(x-3\right)+4x=x
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'4, l-inqas denominatur komuni ta' 2,4.
\left(2x+2\right)\left(x-3\right)+4x=x
Uża l-propjetà distributtiva biex timmultiplika 2 b'x+1.
2x^{2}-4x-6+4x=x
Uża l-propjetà distributtiva biex timmultiplika 2x+2 b'x-3 u kkombina termini simili.
2x^{2}-6=x
Ikkombina -4x u 4x biex tikseb 0.
2x^{2}-6-x=0
Naqqas x miż-żewġ naħat.
2x^{2}-x-6=0
Irranġa mill-ġdid il-polynomial biex tqiegħdu fil-forma standard. Qiegħed it-termini f'ordni mill-ogħla qawwa għall-aktar baxxa.
a+b=-1 ab=2\left(-6\right)=-12
Biex issolvi l-ekwazzjoni, iffatura n-naħa tax-xellug bl-iggruppar. L-ewwel, in-naħa tax-xellug jeħtieġ tinkiteb mill-ġdid bħala 2x^{2}+ax+bx-6. Biex issib a u b, ikkonfigura sistema biex tiġi solvuta.
1,-12 2,-6 3,-4
Minħabba li ab huwa negattiv, a u b għandhom sinjali opposti. Minħabba li a+b huwa negattiv, in-numru negattiv għandu l-valur assolut akbar mill-pożittiv. Elenka l-pari kollha bħal dawn li jagħtu prodott -12.
1-12=-11 2-6=-4 3-4=-1
Ikkalkula s-somma għal kull par.
a=-4 b=3
Is-soluzzjoni hija l-par li jagħti s-somma -1.
\left(2x^{2}-4x\right)+\left(3x-6\right)
Erġa' ikteb 2x^{2}-x-6 bħala \left(2x^{2}-4x\right)+\left(3x-6\right).
2x\left(x-2\right)+3\left(x-2\right)
Fattur 2x fl-ewwel u 3 fit-tieni grupp.
\left(x-2\right)\left(2x+3\right)
Iffattura 'l barra t-terminu komuni x-2 bl-użu ta' propjetà distributtiva.
x=2 x=-\frac{3}{2}
Biex issib soluzzjonijiet tal-ekwazzjoni, solvi x-2=0 u 2x+3=0.
2\left(x+1\right)\left(x-3\right)+4x=x
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'4, l-inqas denominatur komuni ta' 2,4.
\left(2x+2\right)\left(x-3\right)+4x=x
Uża l-propjetà distributtiva biex timmultiplika 2 b'x+1.
2x^{2}-4x-6+4x=x
Uża l-propjetà distributtiva biex timmultiplika 2x+2 b'x-3 u kkombina termini simili.
2x^{2}-6=x
Ikkombina -4x u 4x biex tikseb 0.
2x^{2}-6-x=0
Naqqas x miż-żewġ naħat.
2x^{2}-x-6=0
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti permezz tal-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Il-formula kwadratika tagħti żewġ soluzzjonijiet, waħda meta ± hija addizzjoni u waħda meta hija tnaqqis.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi 2 għal a, -1 għal b, u -6 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-6\right)}}{2\times 2}
Immultiplika -4 b'2.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 2}
Immultiplika -8 b'-6.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 2}
Żid 1 ma' 48.
x=\frac{-\left(-1\right)±7}{2\times 2}
Ħu l-għerq kwadrat ta' 49.
x=\frac{1±7}{2\times 2}
L-oppost ta' -1 huwa 1.
x=\frac{1±7}{4}
Immultiplika 2 b'2.
x=\frac{8}{4}
Issa solvi l-ekwazzjoni x=\frac{1±7}{4} fejn ± hija plus. Żid 1 ma' 7.
x=2
Iddividi 8 b'4.
x=-\frac{6}{4}
Issa solvi l-ekwazzjoni x=\frac{1±7}{4} fejn ± hija minus. Naqqas 7 minn 1.
x=-\frac{3}{2}
Naqqas il-frazzjoni \frac{-6}{4} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 2.
x=2 x=-\frac{3}{2}
L-ekwazzjoni issa solvuta.
2\left(x+1\right)\left(x-3\right)+4x=x
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'4, l-inqas denominatur komuni ta' 2,4.
\left(2x+2\right)\left(x-3\right)+4x=x
Uża l-propjetà distributtiva biex timmultiplika 2 b'x+1.
2x^{2}-4x-6+4x=x
Uża l-propjetà distributtiva biex timmultiplika 2x+2 b'x-3 u kkombina termini simili.
2x^{2}-6=x
Ikkombina -4x u 4x biex tikseb 0.
2x^{2}-6-x=0
Naqqas x miż-żewġ naħat.
2x^{2}-x=6
Żid 6 maż-żewġ naħat. Xi ħaġa plus żero jirriżulta f'dan in-numru stess.
\frac{2x^{2}-x}{2}=\frac{6}{2}
Iddividi ż-żewġ naħat b'2.
x^{2}-\frac{1}{2}x=\frac{6}{2}
Meta tiddividi b'2 titneħħa l-multiplikazzjoni b'2.
x^{2}-\frac{1}{2}x=3
Iddividi 6 b'2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=3+\left(-\frac{1}{4}\right)^{2}
Iddividi -\frac{1}{2}, il-koeffiċjent tat-terminu x, b'2 biex tikseb -\frac{1}{4}. Imbagħad żid il-kwadru ta' -\frac{1}{4} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}-\frac{1}{2}x+\frac{1}{16}=3+\frac{1}{16}
Ikkwadra -\frac{1}{4} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{49}{16}
Żid 3 ma' \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=\frac{49}{16}
Fattur x^{2}-\frac{1}{2}x+\frac{1}{16}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x-\frac{1}{4}=\frac{7}{4} x-\frac{1}{4}=-\frac{7}{4}
Issimplifika.
x=2 x=-\frac{3}{2}
Żid \frac{1}{4} maż-żewġ naħat tal-ekwazzjoni.