Solvi għal x (complex solution)
x=\frac{9+5\sqrt{183}i}{194}\approx 0.046391753+0.348653331i
x=\frac{-5\sqrt{183}i+9}{194}\approx 0.046391753-0.348653331i
Graff
Sehem
Ikkupjat fuq il-klibbord
\left(2x\right)^{2}=12\times 10^{-2}\left(x-1\right)\left(x+4\right)
Il-varjabbli x ma jistax ikun ugwali għal kwalunkwe mill-valuri -4,1 billi d-diviżjoni b'żero mhix definita. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x-1\right)\left(x+4\right).
2^{2}x^{2}=12\times 10^{-2}\left(x-1\right)\left(x+4\right)
Espandi \left(2x\right)^{2}.
4x^{2}=12\times 10^{-2}\left(x-1\right)\left(x+4\right)
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
4x^{2}=12\times \frac{1}{100}\left(x-1\right)\left(x+4\right)
Ikkalkula 10 bil-power ta' -2 u tikseb \frac{1}{100}.
4x^{2}=\frac{3}{25}\left(x-1\right)\left(x+4\right)
Immultiplika 12 u \frac{1}{100} biex tikseb \frac{3}{25}.
4x^{2}=\left(\frac{3}{25}x-\frac{3}{25}\right)\left(x+4\right)
Uża l-propjetà distributtiva biex timmultiplika \frac{3}{25} b'x-1.
4x^{2}=\frac{3}{25}x^{2}+\frac{9}{25}x-\frac{12}{25}
Uża l-propjetà distributtiva biex timmultiplika \frac{3}{25}x-\frac{3}{25} b'x+4 u kkombina termini simili.
4x^{2}-\frac{3}{25}x^{2}=\frac{9}{25}x-\frac{12}{25}
Naqqas \frac{3}{25}x^{2} miż-żewġ naħat.
\frac{97}{25}x^{2}=\frac{9}{25}x-\frac{12}{25}
Ikkombina 4x^{2} u -\frac{3}{25}x^{2} biex tikseb \frac{97}{25}x^{2}.
\frac{97}{25}x^{2}-\frac{9}{25}x=-\frac{12}{25}
Naqqas \frac{9}{25}x miż-żewġ naħat.
\frac{97}{25}x^{2}-\frac{9}{25}x+\frac{12}{25}=0
Żid \frac{12}{25} maż-żewġ naħat.
x=\frac{-\left(-\frac{9}{25}\right)±\sqrt{\left(-\frac{9}{25}\right)^{2}-4\times \frac{97}{25}\times \frac{12}{25}}}{2\times \frac{97}{25}}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi \frac{97}{25} għal a, -\frac{9}{25} għal b, u \frac{12}{25} għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{9}{25}\right)±\sqrt{\frac{81}{625}-4\times \frac{97}{25}\times \frac{12}{25}}}{2\times \frac{97}{25}}
Ikkwadra -\frac{9}{25} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x=\frac{-\left(-\frac{9}{25}\right)±\sqrt{\frac{81}{625}-\frac{388}{25}\times \frac{12}{25}}}{2\times \frac{97}{25}}
Immultiplika -4 b'\frac{97}{25}.
x=\frac{-\left(-\frac{9}{25}\right)±\sqrt{\frac{81-4656}{625}}}{2\times \frac{97}{25}}
Immultiplika -\frac{388}{25} b'\frac{12}{25} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur. Imbagħad naqqas il-frazzjoni għall-inqas termini jekk possibbli.
x=\frac{-\left(-\frac{9}{25}\right)±\sqrt{-\frac{183}{25}}}{2\times \frac{97}{25}}
Żid \frac{81}{625} ma' -\frac{4656}{625} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
x=\frac{-\left(-\frac{9}{25}\right)±\frac{\sqrt{183}i}{5}}{2\times \frac{97}{25}}
Ħu l-għerq kwadrat ta' -\frac{183}{25}.
x=\frac{\frac{9}{25}±\frac{\sqrt{183}i}{5}}{2\times \frac{97}{25}}
L-oppost ta' -\frac{9}{25} huwa \frac{9}{25}.
x=\frac{\frac{9}{25}±\frac{\sqrt{183}i}{5}}{\frac{194}{25}}
Immultiplika 2 b'\frac{97}{25}.
x=\frac{\frac{\sqrt{183}i}{5}+\frac{9}{25}}{\frac{194}{25}}
Issa solvi l-ekwazzjoni x=\frac{\frac{9}{25}±\frac{\sqrt{183}i}{5}}{\frac{194}{25}} fejn ± hija plus. Żid \frac{9}{25} ma' \frac{i\sqrt{183}}{5}.
x=\frac{9+5\sqrt{183}i}{194}
Iddividi \frac{9}{25}+\frac{i\sqrt{183}}{5} b'\frac{194}{25} billi timmultiplika \frac{9}{25}+\frac{i\sqrt{183}}{5} bir-reċiproku ta' \frac{194}{25}.
x=\frac{-\frac{\sqrt{183}i}{5}+\frac{9}{25}}{\frac{194}{25}}
Issa solvi l-ekwazzjoni x=\frac{\frac{9}{25}±\frac{\sqrt{183}i}{5}}{\frac{194}{25}} fejn ± hija minus. Naqqas \frac{i\sqrt{183}}{5} minn \frac{9}{25}.
x=\frac{-5\sqrt{183}i+9}{194}
Iddividi \frac{9}{25}-\frac{i\sqrt{183}}{5} b'\frac{194}{25} billi timmultiplika \frac{9}{25}-\frac{i\sqrt{183}}{5} bir-reċiproku ta' \frac{194}{25}.
x=\frac{9+5\sqrt{183}i}{194} x=\frac{-5\sqrt{183}i+9}{194}
L-ekwazzjoni issa solvuta.
\left(2x\right)^{2}=12\times 10^{-2}\left(x-1\right)\left(x+4\right)
Il-varjabbli x ma jistax ikun ugwali għal kwalunkwe mill-valuri -4,1 billi d-diviżjoni b'żero mhix definita. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x-1\right)\left(x+4\right).
2^{2}x^{2}=12\times 10^{-2}\left(x-1\right)\left(x+4\right)
Espandi \left(2x\right)^{2}.
4x^{2}=12\times 10^{-2}\left(x-1\right)\left(x+4\right)
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
4x^{2}=12\times \frac{1}{100}\left(x-1\right)\left(x+4\right)
Ikkalkula 10 bil-power ta' -2 u tikseb \frac{1}{100}.
4x^{2}=\frac{3}{25}\left(x-1\right)\left(x+4\right)
Immultiplika 12 u \frac{1}{100} biex tikseb \frac{3}{25}.
4x^{2}=\left(\frac{3}{25}x-\frac{3}{25}\right)\left(x+4\right)
Uża l-propjetà distributtiva biex timmultiplika \frac{3}{25} b'x-1.
4x^{2}=\frac{3}{25}x^{2}+\frac{9}{25}x-\frac{12}{25}
Uża l-propjetà distributtiva biex timmultiplika \frac{3}{25}x-\frac{3}{25} b'x+4 u kkombina termini simili.
4x^{2}-\frac{3}{25}x^{2}=\frac{9}{25}x-\frac{12}{25}
Naqqas \frac{3}{25}x^{2} miż-żewġ naħat.
\frac{97}{25}x^{2}=\frac{9}{25}x-\frac{12}{25}
Ikkombina 4x^{2} u -\frac{3}{25}x^{2} biex tikseb \frac{97}{25}x^{2}.
\frac{97}{25}x^{2}-\frac{9}{25}x=-\frac{12}{25}
Naqqas \frac{9}{25}x miż-żewġ naħat.
\frac{\frac{97}{25}x^{2}-\frac{9}{25}x}{\frac{97}{25}}=-\frac{\frac{12}{25}}{\frac{97}{25}}
Iddividi ż-żewġ naħat tal-ekwazzjoni b'\frac{97}{25}, li hija l-istess bħal multiplikazzjoni taż-żewġ naħat bir-reċiproku tal-frazzjoni.
x^{2}+\left(-\frac{\frac{9}{25}}{\frac{97}{25}}\right)x=-\frac{\frac{12}{25}}{\frac{97}{25}}
Meta tiddividi b'\frac{97}{25} titneħħa l-multiplikazzjoni b'\frac{97}{25}.
x^{2}-\frac{9}{97}x=-\frac{\frac{12}{25}}{\frac{97}{25}}
Iddividi -\frac{9}{25} b'\frac{97}{25} billi timmultiplika -\frac{9}{25} bir-reċiproku ta' \frac{97}{25}.
x^{2}-\frac{9}{97}x=-\frac{12}{97}
Iddividi -\frac{12}{25} b'\frac{97}{25} billi timmultiplika -\frac{12}{25} bir-reċiproku ta' \frac{97}{25}.
x^{2}-\frac{9}{97}x+\left(-\frac{9}{194}\right)^{2}=-\frac{12}{97}+\left(-\frac{9}{194}\right)^{2}
Iddividi -\frac{9}{97}, il-koeffiċjent tat-terminu x, b'2 biex tikseb -\frac{9}{194}. Imbagħad żid il-kwadru ta' -\frac{9}{194} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}-\frac{9}{97}x+\frac{81}{37636}=-\frac{12}{97}+\frac{81}{37636}
Ikkwadra -\frac{9}{194} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x^{2}-\frac{9}{97}x+\frac{81}{37636}=-\frac{4575}{37636}
Żid -\frac{12}{97} ma' \frac{81}{37636} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
\left(x-\frac{9}{194}\right)^{2}=-\frac{4575}{37636}
Fattur x^{2}-\frac{9}{97}x+\frac{81}{37636}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{194}\right)^{2}}=\sqrt{-\frac{4575}{37636}}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x-\frac{9}{194}=\frac{5\sqrt{183}i}{194} x-\frac{9}{194}=-\frac{5\sqrt{183}i}{194}
Issimplifika.
x=\frac{9+5\sqrt{183}i}{194} x=\frac{-5\sqrt{183}i+9}{194}
Żid \frac{9}{194} maż-żewġ naħat tal-ekwazzjoni.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}