Aqbeż għall-kontenut ewlieni
Solvi għal a
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

2\left(\frac{\left(2a-5\right)^{2}}{2}-\left(a-3\right)^{2}\right)+1\geq 2a^{2}
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'2. Peress li 2 huwa pożittiv, id-direzzjoni tal-inugwaljanza inbidlet.
2\left(\frac{4a^{2}-20a+25}{2}-\left(a-3\right)^{2}\right)+1\geq 2a^{2}
Uża teorema binomjali \left(a-b\right)^{2}=a^{2}-2ab+b^{2} biex tespandi \left(2a-5\right)^{2}.
2\left(\frac{4a^{2}-20a+25}{2}-\left(a^{2}-6a+9\right)\right)+1\geq 2a^{2}
Uża teorema binomjali \left(a-b\right)^{2}=a^{2}-2ab+b^{2} biex tespandi \left(a-3\right)^{2}.
2\left(\frac{4a^{2}-20a+25}{2}-a^{2}+6a-9\right)+1\geq 2a^{2}
Biex issib l-oppost ta' a^{2}-6a+9, sib l-oppost ta' kull terminu.
2\times \frac{4a^{2}-20a+25}{2}-2a^{2}+12a-18+1\geq 2a^{2}
Uża l-propjetà distributtiva biex timmultiplika 2 b'\frac{4a^{2}-20a+25}{2}-a^{2}+6a-9.
\frac{2\left(4a^{2}-20a+25\right)}{2}-2a^{2}+12a-18+1\geq 2a^{2}
Esprimi 2\times \frac{4a^{2}-20a+25}{2} bħala frazzjoni waħda.
4a^{2}-20a+25-2a^{2}+12a-18+1\geq 2a^{2}
Annulla 2 u 2.
2a^{2}-20a+25+12a-18+1\geq 2a^{2}
Ikkombina 4a^{2} u -2a^{2} biex tikseb 2a^{2}.
2a^{2}-8a+25-18+1\geq 2a^{2}
Ikkombina -20a u 12a biex tikseb -8a.
2a^{2}-8a+7+1\geq 2a^{2}
Naqqas 18 minn 25 biex tikseb 7.
2a^{2}-8a+8\geq 2a^{2}
Żid 7 u 1 biex tikseb 8.
2a^{2}-8a+8-2a^{2}\geq 0
Naqqas 2a^{2} miż-żewġ naħat.
-8a+8\geq 0
Ikkombina 2a^{2} u -2a^{2} biex tikseb 0.
-8a\geq -8
Naqqas 8 miż-żewġ naħat. Xi ħaġa mnaqqsa minn żero tagħti numru negattiv.
a\leq \frac{-8}{-8}
Iddividi ż-żewġ naħat b'-8. Peress li -8 huwa negattiv, id-direzzjoni tal-inugwaljanza inbidlet.
a\leq 1
Iddividi -8 b'-8 biex tikseb1.