Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Fattur
Tick mark Image

Sehem

\frac{\left(\sqrt{3}\right)^{2}+4\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Kwalunkwe ħaġa diviża b'wieħed tagħti riżultat tagħha stess.
\frac{3+4\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Il-kwadrat ta' \sqrt{3} huwa 3.
\frac{3+4\times \left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Irrazzjonalizza d-denominatur tal-\frac{1}{\sqrt{2}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{2}.
\frac{3+4\times \left(\frac{\sqrt{2}}{2}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{3+4\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Biex tgħolli \frac{\sqrt{2}}{2} għal qawwa, għolli kemm in-numeratur u d-denominatur għall-qawwa u mbagħad iddividi.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Esprimi 4\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} bħala frazzjoni waħda.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Irrazzjonalizza d-denominatur tal-\frac{2}{\sqrt{3}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{3}.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2\sqrt{3}}{3}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Il-kwadrat ta' \sqrt{3} huwa 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Biex tgħolli \frac{2\sqrt{3}}{3} għal qawwa, għolli kemm in-numeratur u d-denominatur għall-qawwa u mbagħad iddividi.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{3\times \left(2\sqrt{3}\right)^{2}}{3^{2}}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Esprimi 3\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}} bħala frazzjoni waħda.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Annulla 3 fin-numeratur u d-denominatur.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+5\times 0}{2+2-\left(\sqrt{3}\right)^{2}}
Ikkalkula 0 bil-power ta' 2 u tikseb 0.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+0}{2+2-\left(\sqrt{3}\right)^{2}}
Immultiplika 5 u 0 biex tikseb 0.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Żid 3 u 0 biex tikseb 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{2^{2}\left(\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Espandi \left(2\sqrt{3}\right)^{2}.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{4\times 3}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Il-kwadrat ta' \sqrt{3} huwa 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{12}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Immultiplika 4 u 3 biex tikseb 12.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+4}{2+2-\left(\sqrt{3}\right)^{2}}
Iddividi 12 b'3 biex tikseb4.
\frac{7+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
Żid 3 u 4 biex tikseb 7.
\frac{7+\frac{4\times 2}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{7+\frac{8}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
Immultiplika 4 u 2 biex tikseb 8.
\frac{7+\frac{8}{4}}{2+2-\left(\sqrt{3}\right)^{2}}
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
\frac{7+2}{2+2-\left(\sqrt{3}\right)^{2}}
Iddividi 8 b'4 biex tikseb2.
\frac{9}{2+2-\left(\sqrt{3}\right)^{2}}
Żid 7 u 2 biex tikseb 9.
\frac{9}{4-\left(\sqrt{3}\right)^{2}}
Żid 2 u 2 biex tikseb 4.
\frac{9}{4-3}
Il-kwadrat ta' \sqrt{3} huwa 3.
\frac{9}{1}
Naqqas 3 minn 4 biex tikseb 1.
9
Kwalunkwe ħaġa diviża b'wieħed tagħti riżultat tagħha stess.