Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Fattur
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Irrazzjonalizza d-denominatur tal-\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{7}+\sqrt{5}.
\frac{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{5}\right)^{2}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Ikkunsidra li \left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}{7-5}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Ikkwadra \sqrt{7}. Ikkwadra \sqrt{5}.
\frac{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Naqqas 5 minn 7 biex tikseb 2.
\frac{\left(\sqrt{7}+\sqrt{5}\right)^{2}}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Immultiplika \sqrt{7}+\sqrt{5} u \sqrt{7}+\sqrt{5} biex tikseb \left(\sqrt{7}+\sqrt{5}\right)^{2}.
\frac{\left(\sqrt{7}\right)^{2}+2\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(\sqrt{7}+\sqrt{5}\right)^{2}.
\frac{7+2\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Il-kwadrat ta' \sqrt{7} huwa 7.
\frac{7+2\sqrt{35}+\left(\sqrt{5}\right)^{2}}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Biex timmultiplika \sqrt{7} u \sqrt{5}, immultiplika n-numri taħt l-għerq kwadrat.
\frac{7+2\sqrt{35}+5}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Il-kwadrat ta' \sqrt{5} huwa 5.
\frac{12+2\sqrt{35}}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Żid 7 u 5 biex tikseb 12.
6+\sqrt{35}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Iddividi kull terminu ta' 12+2\sqrt{35} b'2 biex tikseb6+\sqrt{35}.
6+\sqrt{35}+\frac{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}
Irrazzjonalizza d-denominatur tal-\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{7}-\sqrt{5}.
6+\sqrt{35}+\frac{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Ikkunsidra li \left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6+\sqrt{35}+\frac{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{7-5}
Ikkwadra \sqrt{7}. Ikkwadra \sqrt{5}.
6+\sqrt{35}+\frac{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{2}
Naqqas 5 minn 7 biex tikseb 2.
6+\sqrt{35}+\frac{\left(\sqrt{7}-\sqrt{5}\right)^{2}}{2}
Immultiplika \sqrt{7}-\sqrt{5} u \sqrt{7}-\sqrt{5} biex tikseb \left(\sqrt{7}-\sqrt{5}\right)^{2}.
6+\sqrt{35}+\frac{\left(\sqrt{7}\right)^{2}-2\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2}
Uża teorema binomjali \left(a-b\right)^{2}=a^{2}-2ab+b^{2} biex tespandi \left(\sqrt{7}-\sqrt{5}\right)^{2}.
6+\sqrt{35}+\frac{7-2\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2}
Il-kwadrat ta' \sqrt{7} huwa 7.
6+\sqrt{35}+\frac{7-2\sqrt{35}+\left(\sqrt{5}\right)^{2}}{2}
Biex timmultiplika \sqrt{7} u \sqrt{5}, immultiplika n-numri taħt l-għerq kwadrat.
6+\sqrt{35}+\frac{7-2\sqrt{35}+5}{2}
Il-kwadrat ta' \sqrt{5} huwa 5.
6+\sqrt{35}+\frac{12-2\sqrt{35}}{2}
Żid 7 u 5 biex tikseb 12.
6+\sqrt{35}+6-\sqrt{35}
Iddividi kull terminu ta' 12-2\sqrt{35} b'2 biex tikseb6-\sqrt{35}.
12+\sqrt{35}-\sqrt{35}
Żid 6 u 6 biex tikseb 12.
12
Ikkombina \sqrt{35} u -\sqrt{35} biex tikseb 0.