Solvi għal t
t = \frac{2 \sqrt{3} + 3 \sqrt{2}}{6} \approx 1.28445705
Sehem
Ikkupjat fuq il-klibbord
\frac{\sqrt{6}}{\sqrt{6}t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Biex timmultiplika \sqrt{2} u \sqrt{3}, immultiplika n-numri taħt l-għerq kwadrat.
\frac{\sqrt{6}\sqrt{6}}{\left(\sqrt{6}\right)^{2}t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Irrazzjonalizza d-denominatur tal-\frac{\sqrt{6}}{\sqrt{6}t} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{6}.
\frac{\sqrt{6}\sqrt{6}}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Il-kwadrat ta' \sqrt{6} huwa 6.
\frac{6}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Immultiplika \sqrt{6} u \sqrt{6} biex tikseb 6.
\frac{6}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Ikkunsidra li \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{2-3}
Ikkwadra \sqrt{2}. Ikkwadra \sqrt{3}.
\frac{6}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{-1}
Naqqas 3 minn 2 biex tikseb -1.
\frac{6}{6t}=-\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)
Kwalunkwe ħaġa diviża b '-1 jagħtik oppost tiegħu.
\frac{6}{6t}=-\left(\sqrt{6}\sqrt{2}-\sqrt{6}\sqrt{3}\right)
Uża l-propjetà distributtiva biex timmultiplika \sqrt{6} b'\sqrt{2}-\sqrt{3}.
\frac{6}{6t}=-\left(\sqrt{2}\sqrt{3}\sqrt{2}-\sqrt{6}\sqrt{3}\right)
Iffattura 6=2\times 3. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{2\times 3} bħala l-prodott tal-għeruq kwadrati \sqrt{2}\sqrt{3}.
\frac{6}{6t}=-\left(2\sqrt{3}-\sqrt{6}\sqrt{3}\right)
Immultiplika \sqrt{2} u \sqrt{2} biex tikseb 2.
\frac{6}{6t}=-\left(2\sqrt{3}-\sqrt{3}\sqrt{2}\sqrt{3}\right)
Iffattura 6=3\times 2. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{3\times 2} bħala l-prodott tal-għeruq kwadrati \sqrt{3}\sqrt{2}.
\frac{6}{6t}=-\left(2\sqrt{3}-3\sqrt{2}\right)
Immultiplika \sqrt{3} u \sqrt{3} biex tikseb 3.
\frac{6}{6t}=-2\sqrt{3}+3\sqrt{2}
Biex issib l-oppost ta' 2\sqrt{3}-3\sqrt{2}, sib l-oppost ta' kull terminu.
6=-2\sqrt{3}\times 6t+3\sqrt{2}\times 6t
Il-varjabbli t ma jistax ikun ugwali għal 0 billi d-diviżjoni b'żero mhux iddefinit. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'6t.
6=3\times 6\sqrt{2}t-2\times 6\sqrt{3}t
Erġa' ordna t-termini.
6=18\sqrt{2}t-12\sqrt{3}t
Agħmel il-multiplikazzjonijiet.
18\sqrt{2}t-12\sqrt{3}t=6
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
\left(18\sqrt{2}-12\sqrt{3}\right)t=6
Ikkombina t-termini kollha li fihom t.
\frac{\left(18\sqrt{2}-12\sqrt{3}\right)t}{18\sqrt{2}-12\sqrt{3}}=\frac{6}{18\sqrt{2}-12\sqrt{3}}
Iddividi ż-żewġ naħat b'18\sqrt{2}-12\sqrt{3}.
t=\frac{6}{18\sqrt{2}-12\sqrt{3}}
Meta tiddividi b'18\sqrt{2}-12\sqrt{3} titneħħa l-multiplikazzjoni b'18\sqrt{2}-12\sqrt{3}.
t=\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{3}
Iddividi 6 b'18\sqrt{2}-12\sqrt{3}.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}