Evalwa
\sqrt{2}+2\approx 3.414213562
Sehem
Ikkupjat fuq il-klibbord
\frac{2\sqrt{3}+\sqrt{6}+\sqrt{2}+2}{\sqrt{3}+1}
Iffattura 12=2^{2}\times 3. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{2^{2}\times 3} bħala l-prodott tal-għeruq kwadrati \sqrt{2^{2}}\sqrt{3}. Ħu l-għerq kwadrat ta' 2^{2}.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
Irrazzjonalizza d-denominatur tal-\frac{2\sqrt{3}+\sqrt{6}+\sqrt{2}+2}{\sqrt{3}+1} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{3}-1.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Ikkunsidra li \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{3-1}
Ikkwadra \sqrt{3}. Ikkwadra 1.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{2}
Naqqas 1 minn 3 biex tikseb 2.
\frac{2\left(\sqrt{3}\right)^{2}-2\sqrt{3}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' 2\sqrt{3}+\sqrt{6}+\sqrt{2}+2 b'kull terminu ta' \sqrt{3}-1.
\frac{2\times 3-2\sqrt{3}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
Il-kwadrat ta' \sqrt{3} huwa 3.
\frac{6-2\sqrt{3}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
Immultiplika 2 u 3 biex tikseb 6.
\frac{6-2\sqrt{3}+\sqrt{3}\sqrt{2}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
Iffattura 6=3\times 2. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{3\times 2} bħala l-prodott tal-għeruq kwadrati \sqrt{3}\sqrt{2}.
\frac{6-2\sqrt{3}+3\sqrt{2}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
Immultiplika \sqrt{3} u \sqrt{3} biex tikseb 3.
\frac{6-2\sqrt{3}+3\sqrt{2}-\sqrt{6}+\sqrt{6}-\sqrt{2}+2\sqrt{3}-2}{2}
Biex timmultiplika \sqrt{2} u \sqrt{3}, immultiplika n-numri taħt l-għerq kwadrat.
\frac{6-2\sqrt{3}+3\sqrt{2}-\sqrt{2}+2\sqrt{3}-2}{2}
Ikkombina -\sqrt{6} u \sqrt{6} biex tikseb 0.
\frac{6-2\sqrt{3}+2\sqrt{2}+2\sqrt{3}-2}{2}
Ikkombina 3\sqrt{2} u -\sqrt{2} biex tikseb 2\sqrt{2}.
\frac{6+2\sqrt{2}-2}{2}
Ikkombina -2\sqrt{3} u 2\sqrt{3} biex tikseb 0.
\frac{4+2\sqrt{2}}{2}
Naqqas 2 minn 6 biex tikseb 4.
2+\sqrt{2}
Iddividi kull terminu ta' 4+2\sqrt{2} b'2 biex tikseb2+\sqrt{2}.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}