Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Fattur
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x+y u x-y huwa \left(x+y\right)\left(x-y\right). Immultiplika \frac{x-y}{x+y} b'\frac{x-y}{x-y}. Immultiplika \frac{x+y}{x-y} b'\frac{x+y}{x+y}.
\frac{\frac{\left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Billi \frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} u \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Agħmel il-multiplikazzjonijiet fi \left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right).
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Ikkombina termini simili f'x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}
Iffattura x^{2}-y^{2}.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 1 b'\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}}
Billi \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} u \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}}
Agħmel il-multiplikazzjonijiet fi \left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right).
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{xy}{\left(x+y\right)\left(x-y\right)}}
Ikkombina termini simili f'x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}.
\frac{-4xy\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)xy}
Iddividi \frac{-4xy}{\left(x+y\right)\left(x-y\right)} b'\frac{xy}{\left(x+y\right)\left(x-y\right)} billi timmultiplika \frac{-4xy}{\left(x+y\right)\left(x-y\right)} bir-reċiproku ta' \frac{xy}{\left(x+y\right)\left(x-y\right)}.
-4
Annulla xy\left(x+y\right)\left(x-y\right) fin-numeratur u d-denominatur.