Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)}+\frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x+15 u x-5 huwa \left(x-5\right)\left(x+15\right). Immultiplika \frac{x-10}{x+15} b'\frac{x-5}{x-5}. Immultiplika \frac{x-10}{x-5} b'\frac{x+15}{x+15}.
\frac{\frac{\left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Billi \frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)} u \frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\frac{x^{2}-5x-10x+50+x^{2}+15x-10x-150}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Agħmel il-multiplikazzjonijiet fi \left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right).
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Ikkombina termini simili f'x^{2}-5x-10x+50+x^{2}+15x-10x-150.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5}{x-5}-\frac{5}{x-5}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 1 b'\frac{x-5}{x-5}.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5-5}{x-5}}
Billi \frac{x-5}{x-5} u \frac{5}{x-5} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-10}{x-5}}
Ikkombina termini simili f'x-5-5.
\frac{\left(2x^{2}-10x-100\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)\left(x-10\right)}
Iddividi \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} b'\frac{x-10}{x-5} billi timmultiplika \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} bir-reċiproku ta' \frac{x-10}{x-5}.
\frac{2x^{2}-10x-100}{\left(x-10\right)\left(x+15\right)}
Annulla x-5 fin-numeratur u d-denominatur.
\frac{2\left(x-10\right)\left(x+5\right)}{\left(x-10\right)\left(x+15\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati.
\frac{2\left(x+5\right)}{x+15}
Annulla x-10 fin-numeratur u d-denominatur.
\frac{2x+10}{x+15}
Espandi l-espressjoni.
\frac{\frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)}+\frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x+15 u x-5 huwa \left(x-5\right)\left(x+15\right). Immultiplika \frac{x-10}{x+15} b'\frac{x-5}{x-5}. Immultiplika \frac{x-10}{x-5} b'\frac{x+15}{x+15}.
\frac{\frac{\left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Billi \frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)} u \frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\frac{x^{2}-5x-10x+50+x^{2}+15x-10x-150}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Agħmel il-multiplikazzjonijiet fi \left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right).
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Ikkombina termini simili f'x^{2}-5x-10x+50+x^{2}+15x-10x-150.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5}{x-5}-\frac{5}{x-5}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 1 b'\frac{x-5}{x-5}.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5-5}{x-5}}
Billi \frac{x-5}{x-5} u \frac{5}{x-5} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-10}{x-5}}
Ikkombina termini simili f'x-5-5.
\frac{\left(2x^{2}-10x-100\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)\left(x-10\right)}
Iddividi \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} b'\frac{x-10}{x-5} billi timmultiplika \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} bir-reċiproku ta' \frac{x-10}{x-5}.
\frac{2x^{2}-10x-100}{\left(x-10\right)\left(x+15\right)}
Annulla x-5 fin-numeratur u d-denominatur.
\frac{2\left(x-10\right)\left(x+5\right)}{\left(x-10\right)\left(x+15\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati.
\frac{2\left(x+5\right)}{x+15}
Annulla x-10 fin-numeratur u d-denominatur.
\frac{2x+10}{x+15}
Espandi l-espressjoni.