Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\frac{x}{x+5}}{\frac{x}{x+5}+\frac{5\left(x+5\right)}{x+5}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 5 b'\frac{x+5}{x+5}.
\frac{\frac{x}{x+5}}{\frac{x+5\left(x+5\right)}{x+5}}
Billi \frac{x}{x+5} u \frac{5\left(x+5\right)}{x+5} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\frac{x}{x+5}}{\frac{x+5x+25}{x+5}}
Agħmel il-multiplikazzjonijiet fi x+5\left(x+5\right).
\frac{\frac{x}{x+5}}{\frac{6x+25}{x+5}}
Ikkombina termini simili f'x+5x+25.
\frac{x\left(x+5\right)}{\left(x+5\right)\left(6x+25\right)}
Iddividi \frac{x}{x+5} b'\frac{6x+25}{x+5} billi timmultiplika \frac{x}{x+5} bir-reċiproku ta' \frac{6x+25}{x+5}.
\frac{x}{6x+25}
Annulla x+5 fin-numeratur u d-denominatur.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x+5}}{\frac{x}{x+5}+\frac{5\left(x+5\right)}{x+5}})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 5 b'\frac{x+5}{x+5}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x+5}}{\frac{x+5\left(x+5\right)}{x+5}})
Billi \frac{x}{x+5} u \frac{5\left(x+5\right)}{x+5} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x+5}}{\frac{x+5x+25}{x+5}})
Agħmel il-multiplikazzjonijiet fi x+5\left(x+5\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x+5}}{\frac{6x+25}{x+5}})
Ikkombina termini simili f'x+5x+25.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+5\right)}{\left(x+5\right)\left(6x+25\right)})
Iddividi \frac{x}{x+5} b'\frac{6x+25}{x+5} billi timmultiplika \frac{x}{x+5} bir-reċiproku ta' \frac{6x+25}{x+5}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{6x+25})
Annulla x+5 fin-numeratur u d-denominatur.
\frac{\left(6x^{1}+25\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(6x^{1}+25)}{\left(6x^{1}+25\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(6x^{1}+25\right)x^{1-1}-x^{1}\times 6x^{1-1}}{\left(6x^{1}+25\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(6x^{1}+25\right)x^{0}-x^{1}\times 6x^{0}}{\left(6x^{1}+25\right)^{2}}
Agħmel l-aritmetika.
\frac{6x^{1}x^{0}+25x^{0}-x^{1}\times 6x^{0}}{\left(6x^{1}+25\right)^{2}}
Espandi bl-użu ta' propjetà distributtiva.
\frac{6x^{1}+25x^{0}-6x^{1}}{\left(6x^{1}+25\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{\left(6-6\right)x^{1}+25x^{0}}{\left(6x^{1}+25\right)^{2}}
Ikkombina termini simili.
\frac{25x^{0}}{\left(6x^{1}+25\right)^{2}}
Naqqas 6 minn 6.
\frac{25x^{0}}{\left(6x+25\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{25\times 1}{\left(6x+25\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\frac{25}{\left(6x+25\right)^{2}}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.