Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\frac{-2y}{\left(y-1\right)\left(y+1\right)}-\frac{1}{y+1}}{\frac{y}{y-1}}
Iffattura y^{2}-1.
\frac{\frac{-2y}{\left(y-1\right)\left(y+1\right)}-\frac{y-1}{\left(y-1\right)\left(y+1\right)}}{\frac{y}{y-1}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(y-1\right)\left(y+1\right) u y+1 huwa \left(y-1\right)\left(y+1\right). Immultiplika \frac{1}{y+1} b'\frac{y-1}{y-1}.
\frac{\frac{-2y-\left(y-1\right)}{\left(y-1\right)\left(y+1\right)}}{\frac{y}{y-1}}
Billi \frac{-2y}{\left(y-1\right)\left(y+1\right)} u \frac{y-1}{\left(y-1\right)\left(y+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{-2y-y+1}{\left(y-1\right)\left(y+1\right)}}{\frac{y}{y-1}}
Agħmel il-multiplikazzjonijiet fi -2y-\left(y-1\right).
\frac{\frac{-3y+1}{\left(y-1\right)\left(y+1\right)}}{\frac{y}{y-1}}
Ikkombina termini simili f'-2y-y+1.
\frac{\left(-3y+1\right)\left(y-1\right)}{\left(y-1\right)\left(y+1\right)y}
Iddividi \frac{-3y+1}{\left(y-1\right)\left(y+1\right)} b'\frac{y}{y-1} billi timmultiplika \frac{-3y+1}{\left(y-1\right)\left(y+1\right)} bir-reċiproku ta' \frac{y}{y-1}.
\frac{-3y+1}{y\left(y+1\right)}
Annulla y-1 fin-numeratur u d-denominatur.
\frac{-3y+1}{y^{2}+y}
Uża l-propjetà distributtiva biex timmultiplika y b'y+1.
\frac{\frac{-2y}{\left(y-1\right)\left(y+1\right)}-\frac{1}{y+1}}{\frac{y}{y-1}}
Iffattura y^{2}-1.
\frac{\frac{-2y}{\left(y-1\right)\left(y+1\right)}-\frac{y-1}{\left(y-1\right)\left(y+1\right)}}{\frac{y}{y-1}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(y-1\right)\left(y+1\right) u y+1 huwa \left(y-1\right)\left(y+1\right). Immultiplika \frac{1}{y+1} b'\frac{y-1}{y-1}.
\frac{\frac{-2y-\left(y-1\right)}{\left(y-1\right)\left(y+1\right)}}{\frac{y}{y-1}}
Billi \frac{-2y}{\left(y-1\right)\left(y+1\right)} u \frac{y-1}{\left(y-1\right)\left(y+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{-2y-y+1}{\left(y-1\right)\left(y+1\right)}}{\frac{y}{y-1}}
Agħmel il-multiplikazzjonijiet fi -2y-\left(y-1\right).
\frac{\frac{-3y+1}{\left(y-1\right)\left(y+1\right)}}{\frac{y}{y-1}}
Ikkombina termini simili f'-2y-y+1.
\frac{\left(-3y+1\right)\left(y-1\right)}{\left(y-1\right)\left(y+1\right)y}
Iddividi \frac{-3y+1}{\left(y-1\right)\left(y+1\right)} b'\frac{y}{y-1} billi timmultiplika \frac{-3y+1}{\left(y-1\right)\left(y+1\right)} bir-reċiproku ta' \frac{y}{y-1}.
\frac{-3y+1}{y\left(y+1\right)}
Annulla y-1 fin-numeratur u d-denominatur.
\frac{-3y+1}{y^{2}+y}
Uża l-propjetà distributtiva biex timmultiplika y b'y+1.