Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. α
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\alpha \left(\alpha +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}+\frac{\beta \left(\beta +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \beta +1 u \alpha +1 huwa \left(\alpha +1\right)\left(\beta +1\right). Immultiplika \frac{\alpha }{\beta +1} b'\frac{\alpha +1}{\alpha +1}. Immultiplika \frac{\beta }{\alpha +1} b'\frac{\beta +1}{\beta +1}.
\frac{\alpha \left(\alpha +1\right)+\beta \left(\beta +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}
Billi \frac{\alpha \left(\alpha +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)} u \frac{\beta \left(\beta +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\alpha ^{2}+\alpha +\beta ^{2}+\beta }{\left(\alpha +1\right)\left(\beta +1\right)}
Agħmel il-multiplikazzjonijiet fi \alpha \left(\alpha +1\right)+\beta \left(\beta +1\right).
\frac{\alpha ^{2}+\alpha +\beta ^{2}+\beta }{\alpha \beta +\alpha +\beta +1}
Espandi \left(\alpha +1\right)\left(\beta +1\right).