Evalwa
\frac{2\beta }{5}+1
Espandi
\frac{2\beta }{5}+1
Sehem
Ikkupjat fuq il-klibbord
\beta \times \frac{2}{5}+\frac{\left(2\times 35+2\right)\times 25}{35\left(1\times 25+11\right)}-\frac{3}{7}
Iddividi \frac{2\times 35+2}{35} b'\frac{1\times 25+11}{25} billi timmultiplika \frac{2\times 35+2}{35} bir-reċiproku ta' \frac{1\times 25+11}{25}.
\beta \times \frac{2}{5}+\frac{5\left(2+2\times 35\right)}{7\left(11+25\right)}-\frac{3}{7}
Annulla 5 fin-numeratur u d-denominatur.
\beta \times \frac{2}{5}+\frac{5\left(2+70\right)}{7\left(11+25\right)}-\frac{3}{7}
Immultiplika 2 u 35 biex tikseb 70.
\beta \times \frac{2}{5}+\frac{5\times 72}{7\left(11+25\right)}-\frac{3}{7}
Żid 2 u 70 biex tikseb 72.
\beta \times \frac{2}{5}+\frac{360}{7\left(11+25\right)}-\frac{3}{7}
Immultiplika 5 u 72 biex tikseb 360.
\beta \times \frac{2}{5}+\frac{360}{7\times 36}-\frac{3}{7}
Żid 11 u 25 biex tikseb 36.
\beta \times \frac{2}{5}+\frac{360}{252}-\frac{3}{7}
Immultiplika 7 u 36 biex tikseb 252.
\beta \times \frac{2}{5}+\frac{10}{7}-\frac{3}{7}
Naqqas il-frazzjoni \frac{360}{252} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 36.
\beta \times \frac{2}{5}+\frac{10-3}{7}
Billi \frac{10}{7} u \frac{3}{7} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\beta \times \frac{2}{5}+\frac{7}{7}
Naqqas 3 minn 10 biex tikseb 7.
\beta \times \frac{2}{5}+1
Iddividi 7 b'7 biex tikseb1.
\beta \times \frac{2}{5}+\frac{\left(2\times 35+2\right)\times 25}{35\left(1\times 25+11\right)}-\frac{3}{7}
Iddividi \frac{2\times 35+2}{35} b'\frac{1\times 25+11}{25} billi timmultiplika \frac{2\times 35+2}{35} bir-reċiproku ta' \frac{1\times 25+11}{25}.
\beta \times \frac{2}{5}+\frac{5\left(2+2\times 35\right)}{7\left(11+25\right)}-\frac{3}{7}
Annulla 5 fin-numeratur u d-denominatur.
\beta \times \frac{2}{5}+\frac{5\left(2+70\right)}{7\left(11+25\right)}-\frac{3}{7}
Immultiplika 2 u 35 biex tikseb 70.
\beta \times \frac{2}{5}+\frac{5\times 72}{7\left(11+25\right)}-\frac{3}{7}
Żid 2 u 70 biex tikseb 72.
\beta \times \frac{2}{5}+\frac{360}{7\left(11+25\right)}-\frac{3}{7}
Immultiplika 5 u 72 biex tikseb 360.
\beta \times \frac{2}{5}+\frac{360}{7\times 36}-\frac{3}{7}
Żid 11 u 25 biex tikseb 36.
\beta \times \frac{2}{5}+\frac{360}{252}-\frac{3}{7}
Immultiplika 7 u 36 biex tikseb 252.
\beta \times \frac{2}{5}+\frac{10}{7}-\frac{3}{7}
Naqqas il-frazzjoni \frac{360}{252} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 36.
\beta \times \frac{2}{5}+\frac{10-3}{7}
Billi \frac{10}{7} u \frac{3}{7} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\beta \times \frac{2}{5}+\frac{7}{7}
Naqqas 3 minn 10 biex tikseb 7.
\beta \times \frac{2}{5}+1
Iddividi 7 b'7 biex tikseb1.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}