Solvi għal α
\alpha \in \mathrm{R}
Solvi għal β
\beta \in \mathrm{R}
Sehem
Ikkupjat fuq il-klibbord
\alpha \beta ^{2}+\alpha ^{2}\beta =\beta \alpha ^{2}+\alpha \beta ^{2}
Uża l-propjetà distributtiva biex timmultiplika \alpha \beta b'\alpha +\beta .
\alpha \beta ^{2}+\alpha ^{2}\beta -\beta \alpha ^{2}=\alpha \beta ^{2}
Naqqas \beta \alpha ^{2} miż-żewġ naħat.
\alpha \beta ^{2}=\alpha \beta ^{2}
Ikkombina \alpha ^{2}\beta u -\beta \alpha ^{2} biex tikseb 0.
\alpha \beta ^{2}-\alpha \beta ^{2}=0
Naqqas \alpha \beta ^{2} miż-żewġ naħat.
0=0
Ikkombina \alpha \beta ^{2} u -\alpha \beta ^{2} biex tikseb 0.
\text{true}
Qabbel 0 u 0.
\alpha \in \mathrm{R}
Din hija vera għal kwalunkwe \alpha .
\alpha \beta ^{2}+\alpha ^{2}\beta =\beta \alpha ^{2}+\alpha \beta ^{2}
Uża l-propjetà distributtiva biex timmultiplika \alpha \beta b'\alpha +\beta .
\alpha \beta ^{2}+\alpha ^{2}\beta -\beta \alpha ^{2}=\alpha \beta ^{2}
Naqqas \beta \alpha ^{2} miż-żewġ naħat.
\alpha \beta ^{2}=\alpha \beta ^{2}
Ikkombina \alpha ^{2}\beta u -\beta \alpha ^{2} biex tikseb 0.
\alpha \beta ^{2}-\alpha \beta ^{2}=0
Naqqas \alpha \beta ^{2} miż-żewġ naħat.
0=0
Ikkombina \alpha \beta ^{2} u -\alpha \beta ^{2} biex tikseb 0.
\text{true}
Qabbel 0 u 0.
\beta \in \mathrm{R}
Din hija vera għal kwalunkwe \beta .
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}