Aqbeż għall-kontenut ewlieni
Solvi għal α
Tick mark Image
Solvi għal β
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\alpha \beta ^{2}+\alpha ^{2}\beta =\beta \alpha ^{2}+\alpha \beta ^{2}
Uża l-propjetà distributtiva biex timmultiplika \alpha \beta b'\alpha +\beta .
\alpha \beta ^{2}+\alpha ^{2}\beta -\beta \alpha ^{2}=\alpha \beta ^{2}
Naqqas \beta \alpha ^{2} miż-żewġ naħat.
\alpha \beta ^{2}=\alpha \beta ^{2}
Ikkombina \alpha ^{2}\beta u -\beta \alpha ^{2} biex tikseb 0.
\alpha \beta ^{2}-\alpha \beta ^{2}=0
Naqqas \alpha \beta ^{2} miż-żewġ naħat.
0=0
Ikkombina \alpha \beta ^{2} u -\alpha \beta ^{2} biex tikseb 0.
\text{true}
Qabbel 0 u 0.
\alpha \in \mathrm{R}
Din hija vera għal kwalunkwe \alpha .
\alpha \beta ^{2}+\alpha ^{2}\beta =\beta \alpha ^{2}+\alpha \beta ^{2}
Uża l-propjetà distributtiva biex timmultiplika \alpha \beta b'\alpha +\beta .
\alpha \beta ^{2}+\alpha ^{2}\beta -\beta \alpha ^{2}=\alpha \beta ^{2}
Naqqas \beta \alpha ^{2} miż-żewġ naħat.
\alpha \beta ^{2}=\alpha \beta ^{2}
Ikkombina \alpha ^{2}\beta u -\beta \alpha ^{2} biex tikseb 0.
\alpha \beta ^{2}-\alpha \beta ^{2}=0
Naqqas \alpha \beta ^{2} miż-żewġ naħat.
0=0
Ikkombina \alpha \beta ^{2} u -\alpha \beta ^{2} biex tikseb 0.
\text{true}
Qabbel 0 u 0.
\beta \in \mathrm{R}
Din hija vera għal kwalunkwe \beta .