Aqbeż għall-kontenut ewlieni
Solvi għal α
Tick mark Image
Solvi għal β
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\alpha ^{2}+\beta ^{2}=\alpha ^{2}+2\alpha \beta +\beta ^{2}-2
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(\alpha +\beta \right)^{2}.
\alpha ^{2}+\beta ^{2}-\alpha ^{2}=2\alpha \beta +\beta ^{2}-2
Naqqas \alpha ^{2} miż-żewġ naħat.
\beta ^{2}=2\alpha \beta +\beta ^{2}-2
Ikkombina \alpha ^{2} u -\alpha ^{2} biex tikseb 0.
2\alpha \beta +\beta ^{2}-2=\beta ^{2}
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
2\alpha \beta -2=\beta ^{2}-\beta ^{2}
Naqqas \beta ^{2} miż-żewġ naħat.
2\alpha \beta -2=0
Ikkombina \beta ^{2} u -\beta ^{2} biex tikseb 0.
2\alpha \beta =2
Żid 2 maż-żewġ naħat. Xi ħaġa plus żero jirriżulta f'dan in-numru stess.
2\beta \alpha =2
L-ekwazzjoni hija f'forma standard.
\frac{2\beta \alpha }{2\beta }=\frac{2}{2\beta }
Iddividi ż-żewġ naħat b'2\beta .
\alpha =\frac{2}{2\beta }
Meta tiddividi b'2\beta titneħħa l-multiplikazzjoni b'2\beta .
\alpha =\frac{1}{\beta }
Iddividi 2 b'2\beta .
\alpha ^{2}+\beta ^{2}=\alpha ^{2}+2\alpha \beta +\beta ^{2}-2
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(\alpha +\beta \right)^{2}.
\alpha ^{2}+\beta ^{2}-2\alpha \beta =\alpha ^{2}+\beta ^{2}-2
Naqqas 2\alpha \beta miż-żewġ naħat.
\alpha ^{2}+\beta ^{2}-2\alpha \beta -\beta ^{2}=\alpha ^{2}-2
Naqqas \beta ^{2} miż-żewġ naħat.
\alpha ^{2}-2\alpha \beta =\alpha ^{2}-2
Ikkombina \beta ^{2} u -\beta ^{2} biex tikseb 0.
-2\alpha \beta =\alpha ^{2}-2-\alpha ^{2}
Naqqas \alpha ^{2} miż-żewġ naħat.
-2\alpha \beta =-2
Ikkombina \alpha ^{2} u -\alpha ^{2} biex tikseb 0.
\left(-2\alpha \right)\beta =-2
L-ekwazzjoni hija f'forma standard.
\frac{\left(-2\alpha \right)\beta }{-2\alpha }=-\frac{2}{-2\alpha }
Iddividi ż-żewġ naħat b'-2\alpha .
\beta =-\frac{2}{-2\alpha }
Meta tiddividi b'-2\alpha titneħħa l-multiplikazzjoni b'-2\alpha .
\beta =\frac{1}{\alpha }
Iddividi -2 b'-2\alpha .