Solvi għal X (complex solution)
\left\{\begin{matrix}X=\frac{4077D_{0}-40000Y+58000Y_{3}}{4000Y}\text{, }&Y\neq 0\\X\in \mathrm{C}\text{, }&Y_{3}=-\frac{4077D_{0}}{58000}\text{ and }Y=0\end{matrix}\right.
Solvi għal D_0
D_{0}=\frac{4000XY+40000Y-58000Y_{3}}{4077}
Solvi għal X
\left\{\begin{matrix}X=\frac{4077D_{0}-40000Y+58000Y_{3}}{4000Y}\text{, }&Y\neq 0\\X\in \mathrm{R}\text{, }&Y_{3}=-\frac{4077D_{0}}{58000}\text{ and }Y=0\end{matrix}\right.
Sehem
Ikkupjat fuq il-klibbord
26Y_{3}-25Y-\left(2XY-3Y_{3}-5Y\right)=-2.0385D_{0}
Ikkombina 35Y_{3} u -9Y_{3} biex tikseb 26Y_{3}.
26Y_{3}-25Y-2XY+3Y_{3}+5Y=-2.0385D_{0}
Biex issib l-oppost ta' 2XY-3Y_{3}-5Y, sib l-oppost ta' kull terminu.
29Y_{3}-25Y-2XY+5Y=-2.0385D_{0}
Ikkombina 26Y_{3} u 3Y_{3} biex tikseb 29Y_{3}.
29Y_{3}-20Y-2XY=-2.0385D_{0}
Ikkombina -25Y u 5Y biex tikseb -20Y.
-20Y-2XY=-2.0385D_{0}-29Y_{3}
Naqqas 29Y_{3} miż-żewġ naħat.
-2XY=-2.0385D_{0}-29Y_{3}+20Y
Żid 20Y maż-żewġ naħat.
\left(-2Y\right)X=-\frac{4077D_{0}}{2000}+20Y-29Y_{3}
L-ekwazzjoni hija f'forma standard.
\frac{\left(-2Y\right)X}{-2Y}=\frac{-\frac{4077D_{0}}{2000}+20Y-29Y_{3}}{-2Y}
Iddividi ż-żewġ naħat b'-2Y.
X=\frac{-\frac{4077D_{0}}{2000}+20Y-29Y_{3}}{-2Y}
Meta tiddividi b'-2Y titneħħa l-multiplikazzjoni b'-2Y.
X=\frac{\frac{29Y_{3}}{2}+\frac{4077D_{0}}{4000}}{Y}-10
Iddividi -29Y_{3}-\frac{4077D_{0}}{2000}+20Y b'-2Y.
26Y_{3}-25Y-\left(2XY-3Y_{3}-5Y\right)=-2.0385D_{0}
Ikkombina 35Y_{3} u -9Y_{3} biex tikseb 26Y_{3}.
26Y_{3}-25Y-2XY+3Y_{3}+5Y=-2.0385D_{0}
Biex issib l-oppost ta' 2XY-3Y_{3}-5Y, sib l-oppost ta' kull terminu.
29Y_{3}-25Y-2XY+5Y=-2.0385D_{0}
Ikkombina 26Y_{3} u 3Y_{3} biex tikseb 29Y_{3}.
29Y_{3}-20Y-2XY=-2.0385D_{0}
Ikkombina -25Y u 5Y biex tikseb -20Y.
-2.0385D_{0}=29Y_{3}-20Y-2XY
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
\frac{-2.0385D_{0}}{-2.0385}=\frac{29Y_{3}-20Y-2XY}{-2.0385}
Iddividi ż-żewġ naħat tal-ekwazzjoni b'-2.0385, li hija l-istess bħal multiplikazzjoni taż-żewġ naħat bir-reċiproku tal-frazzjoni.
D_{0}=\frac{29Y_{3}-20Y-2XY}{-2.0385}
Meta tiddividi b'-2.0385 titneħħa l-multiplikazzjoni b'-2.0385.
D_{0}=\frac{4000XY+40000Y-58000Y_{3}}{4077}
Iddividi 29Y_{3}-20Y-2XY b'-2.0385 billi timmultiplika 29Y_{3}-20Y-2XY bir-reċiproku ta' -2.0385.
26Y_{3}-25Y-\left(2XY-3Y_{3}-5Y\right)=-2.0385D_{0}
Ikkombina 35Y_{3} u -9Y_{3} biex tikseb 26Y_{3}.
26Y_{3}-25Y-2XY+3Y_{3}+5Y=-2.0385D_{0}
Biex issib l-oppost ta' 2XY-3Y_{3}-5Y, sib l-oppost ta' kull terminu.
29Y_{3}-25Y-2XY+5Y=-2.0385D_{0}
Ikkombina 26Y_{3} u 3Y_{3} biex tikseb 29Y_{3}.
29Y_{3}-20Y-2XY=-2.0385D_{0}
Ikkombina -25Y u 5Y biex tikseb -20Y.
-20Y-2XY=-2.0385D_{0}-29Y_{3}
Naqqas 29Y_{3} miż-żewġ naħat.
-2XY=-2.0385D_{0}-29Y_{3}+20Y
Żid 20Y maż-żewġ naħat.
\left(-2Y\right)X=-\frac{4077D_{0}}{2000}+20Y-29Y_{3}
L-ekwazzjoni hija f'forma standard.
\frac{\left(-2Y\right)X}{-2Y}=\frac{-\frac{4077D_{0}}{2000}+20Y-29Y_{3}}{-2Y}
Iddividi ż-żewġ naħat b'-2Y.
X=\frac{-\frac{4077D_{0}}{2000}+20Y-29Y_{3}}{-2Y}
Meta tiddividi b'-2Y titneħħa l-multiplikazzjoni b'-2Y.
X=\frac{\frac{29Y_{3}}{2}+\frac{4077D_{0}}{4000}}{Y}-10
Iddividi -29Y_{3}-\frac{4077D_{0}}{2000}+20Y b'-2Y.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}