Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{15-\left(\frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1}-\frac{x^{4}+1}{x^{2}+1}\right)\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika x^{4} b'\frac{x^{2}+1}{x^{2}+1}.
\frac{15-\frac{x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right)}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Billi \frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1} u \frac{x^{4}+1}{x^{2}+1} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{15-\frac{x^{6}+x^{4}-x^{4}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Agħmel il-multiplikazzjonijiet fi x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right).
\frac{15-\frac{x^{6}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Ikkombina termini simili f'x^{6}+x^{4}-x^{4}-1.
\frac{15-\frac{\left(x^{6}-1\right)\left(x^{2}+1\right)\left(x-4\right)}{\left(x^{2}+1\right)\left(x^{7}+6x^{6}-x-6\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Immultiplika \frac{x^{6}-1}{x^{2}+1} b'\frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{15-\frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Annulla x^{2}+1 fin-numeratur u d-denominatur.
\frac{15-\frac{\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+6\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}.
\frac{15-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Annulla \left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) fin-numeratur u d-denominatur.
\frac{\frac{15\left(x+6\right)}{x+6}-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 15 b'\frac{x+6}{x+6}.
\frac{\frac{15\left(x+6\right)-\left(x-4\right)}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Billi \frac{15\left(x+6\right)}{x+6} u \frac{x-4}{x+6} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{15x+90-x+4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Agħmel il-multiplikazzjonijiet fi 15\left(x+6\right)-\left(x-4\right).
\frac{\frac{14x+94}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Ikkombina termini simili f'15x+90-x+4.
\frac{\left(14x+94\right)\left(3x^{2}+12x-36\right)}{\left(x+6\right)\left(x^{2}+29x+78\right)}
Iddividi \frac{14x+94}{x+6} b'\frac{x^{2}+29x+78}{3x^{2}+12x-36} billi timmultiplika \frac{14x+94}{x+6} bir-reċiproku ta' \frac{x^{2}+29x+78}{3x^{2}+12x-36}.
\frac{2\times 3\left(x-2\right)\left(x+6\right)\left(7x+47\right)}{\left(x+3\right)\left(x+6\right)\left(x+26\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati.
\frac{2\times 3\left(x-2\right)\left(7x+47\right)}{\left(x+3\right)\left(x+26\right)}
Annulla x+6 fin-numeratur u d-denominatur.
\frac{42x^{2}+198x-564}{x^{2}+29x+78}
Espandi l-espressjoni.
\frac{15-\left(\frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1}-\frac{x^{4}+1}{x^{2}+1}\right)\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika x^{4} b'\frac{x^{2}+1}{x^{2}+1}.
\frac{15-\frac{x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right)}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Billi \frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1} u \frac{x^{4}+1}{x^{2}+1} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{15-\frac{x^{6}+x^{4}-x^{4}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Agħmel il-multiplikazzjonijiet fi x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right).
\frac{15-\frac{x^{6}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Ikkombina termini simili f'x^{6}+x^{4}-x^{4}-1.
\frac{15-\frac{\left(x^{6}-1\right)\left(x^{2}+1\right)\left(x-4\right)}{\left(x^{2}+1\right)\left(x^{7}+6x^{6}-x-6\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Immultiplika \frac{x^{6}-1}{x^{2}+1} b'\frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{15-\frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Annulla x^{2}+1 fin-numeratur u d-denominatur.
\frac{15-\frac{\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+6\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}.
\frac{15-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Annulla \left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) fin-numeratur u d-denominatur.
\frac{\frac{15\left(x+6\right)}{x+6}-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 15 b'\frac{x+6}{x+6}.
\frac{\frac{15\left(x+6\right)-\left(x-4\right)}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Billi \frac{15\left(x+6\right)}{x+6} u \frac{x-4}{x+6} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{15x+90-x+4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Agħmel il-multiplikazzjonijiet fi 15\left(x+6\right)-\left(x-4\right).
\frac{\frac{14x+94}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Ikkombina termini simili f'15x+90-x+4.
\frac{\left(14x+94\right)\left(3x^{2}+12x-36\right)}{\left(x+6\right)\left(x^{2}+29x+78\right)}
Iddividi \frac{14x+94}{x+6} b'\frac{x^{2}+29x+78}{3x^{2}+12x-36} billi timmultiplika \frac{14x+94}{x+6} bir-reċiproku ta' \frac{x^{2}+29x+78}{3x^{2}+12x-36}.
\frac{2\times 3\left(x-2\right)\left(x+6\right)\left(7x+47\right)}{\left(x+3\right)\left(x+6\right)\left(x+26\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati.
\frac{2\times 3\left(x-2\right)\left(7x+47\right)}{\left(x+3\right)\left(x+26\right)}
Annulla x+6 fin-numeratur u d-denominatur.
\frac{42x^{2}+198x-564}{x^{2}+29x+78}
Espandi l-espressjoni.