Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Fattur
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\left(1+\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\frac{1}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
Irrazzjonalizza d-denominatur tal-\frac{1}{\sqrt{2}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{2}.
\left(1+\frac{\sqrt{2}}{2}+\frac{1}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
Il-kwadrat ta' \sqrt{2} huwa 2.
\left(\frac{2}{2}+\frac{\sqrt{2}}{2}+\frac{1}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
Ikkonverti 1 fi frazzjoni \frac{2}{2}.
\left(\frac{2+1}{2}+\frac{\sqrt{2}}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
Billi \frac{2}{2} u \frac{1}{2} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\left(\frac{3}{2}+\frac{\sqrt{2}}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
Żid 2 u 1 biex tikseb 3.
\frac{3+\sqrt{2}}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
Billi \frac{3}{2} u \frac{\sqrt{2}}{2} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{3+\sqrt{2}}{2}\left(1-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\frac{1}{2}\right)
Irrazzjonalizza d-denominatur tal-\frac{1}{\sqrt{2}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{2}.
\frac{3+\sqrt{2}}{2}\left(1-\frac{\sqrt{2}}{2}+\frac{1}{2}\right)
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{3+\sqrt{2}}{2}\left(\frac{2}{2}-\frac{\sqrt{2}}{2}+\frac{1}{2}\right)
Ikkonverti 1 fi frazzjoni \frac{2}{2}.
\frac{3+\sqrt{2}}{2}\left(\frac{2+1}{2}-\frac{\sqrt{2}}{2}\right)
Billi \frac{2}{2} u \frac{1}{2} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{3+\sqrt{2}}{2}\left(\frac{3}{2}-\frac{\sqrt{2}}{2}\right)
Żid 2 u 1 biex tikseb 3.
\frac{3+\sqrt{2}}{2}\times \frac{3+\sqrt{2}}{2}
Billi \frac{3}{2} u \frac{\sqrt{2}}{2} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\left(\frac{3+\sqrt{2}}{2}\right)^{2}
Immultiplika \frac{3+\sqrt{2}}{2} u \frac{3+\sqrt{2}}{2} biex tikseb \left(\frac{3+\sqrt{2}}{2}\right)^{2}.
\frac{\left(3+\sqrt{2}\right)^{2}}{2^{2}}
Biex tgħolli \frac{3+\sqrt{2}}{2} għal qawwa, għolli kemm in-numeratur u d-denominatur għall-qawwa u mbagħad iddividi.
\frac{9+6\sqrt{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(3+\sqrt{2}\right)^{2}.
\frac{9+6\sqrt{2}+2}{2^{2}}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{11+6\sqrt{2}}{2^{2}}
Żid 9 u 2 biex tikseb 11.
\frac{11+6\sqrt{2}}{4}
Ikkalkula 2 bil-power ta' 2 u tikseb 4.