Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Fattur
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\left(\left(\frac{2}{3}\right)^{2}\left(-\frac{2}{3}\right)^{7}\right)^{2}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom. Żid 3 u 4 biex tikseb 7.
\frac{\left(\frac{4}{9}\left(-\frac{2}{3}\right)^{7}\right)^{2}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Ikkalkula \frac{2}{3} bil-power ta' 2 u tikseb \frac{4}{9}.
\frac{\left(\frac{4}{9}\left(-\frac{128}{2187}\right)\right)^{2}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Ikkalkula -\frac{2}{3} bil-power ta' 7 u tikseb -\frac{128}{2187}.
\frac{\left(-\frac{512}{19683}\right)^{2}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Immultiplika \frac{4}{9} u -\frac{128}{2187} biex tikseb -\frac{512}{19683}.
\frac{\frac{262144}{387420489}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Ikkalkula -\frac{512}{19683} bil-power ta' 2 u tikseb \frac{262144}{387420489}.
\frac{\frac{262144}{387420489}}{\left(-\left(-\frac{32}{243}\right)\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Ikkalkula -\frac{2}{3} bil-power ta' 5 u tikseb -\frac{32}{243}.
\frac{\frac{262144}{387420489}}{\left(\frac{32}{243}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
L-oppost ta' -\frac{32}{243} huwa \frac{32}{243}.
\frac{\frac{262144}{387420489}}{\frac{32768}{14348907}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Ikkalkula \frac{32}{243} bil-power ta' 3 u tikseb \frac{32768}{14348907}.
\frac{262144}{387420489}\times \frac{14348907}{32768}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Iddividi \frac{262144}{387420489} b'\frac{32768}{14348907} billi timmultiplika \frac{262144}{387420489} bir-reċiproku ta' \frac{32768}{14348907}.
\frac{8}{27}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Immultiplika \frac{262144}{387420489} u \frac{14348907}{32768} biex tikseb \frac{8}{27}.
\frac{8}{27}-\frac{8}{27}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Ikkalkula -\frac{2}{3} bil-power ta' 3 u tikseb -\frac{8}{27}.
0-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Naqqas \frac{8}{27} minn \frac{8}{27} biex tikseb 0.
0-\frac{16}{2401}\left(-\frac{7}{4}\right)^{4}
Ikkalkula \frac{2}{7} bil-power ta' 4 u tikseb \frac{16}{2401}.
0-\frac{16}{2401}\times \frac{2401}{256}
Ikkalkula -\frac{7}{4} bil-power ta' 4 u tikseb \frac{2401}{256}.
0-\frac{1}{16}
Immultiplika \frac{16}{2401} u \frac{2401}{256} biex tikseb \frac{1}{16}.
-\frac{1}{16}
Naqqas \frac{1}{16} minn 0 biex tikseb -\frac{1}{16}.