Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{x}{x+1}+\frac{x+1}{x+1}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 1 b'\frac{x+1}{x+1}.
\frac{x+x+1}{x+1}
Billi \frac{x}{x+1} u \frac{x+1}{x+1} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{2x+1}{x+1}
Ikkombina termini simili f'x+x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{x+1}+\frac{x+1}{x+1})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 1 b'\frac{x+1}{x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+x+1}{x+1})
Billi \frac{x}{x+1} u \frac{x+1}{x+1} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+1}{x+1})
Ikkombina termini simili f'x+x+1.
\frac{\left(x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+1)-\left(2x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+1)}{\left(x^{1}+1\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(x^{1}+1\right)\times 2x^{1-1}-\left(2x^{1}+1\right)x^{1-1}}{\left(x^{1}+1\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(x^{1}+1\right)\times 2x^{0}-\left(2x^{1}+1\right)x^{0}}{\left(x^{1}+1\right)^{2}}
Agħmel l-aritmetika.
\frac{x^{1}\times 2x^{0}+2x^{0}-\left(2x^{1}x^{0}+x^{0}\right)}{\left(x^{1}+1\right)^{2}}
Espandi bl-użu ta' propjetà distributtiva.
\frac{2x^{1}+2x^{0}-\left(2x^{1}+x^{0}\right)}{\left(x^{1}+1\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{2x^{1}+2x^{0}-2x^{1}-x^{0}}{\left(x^{1}+1\right)^{2}}
Neħħi l-parenteżi mhux meħtieġa.
\frac{\left(2-2\right)x^{1}+\left(2-1\right)x^{0}}{\left(x^{1}+1\right)^{2}}
Ikkombina termini simili.
\frac{x^{0}}{\left(x^{1}+1\right)^{2}}
Naqqas 2 minn 2 u 1 minn 2.
\frac{x^{0}}{\left(x+1\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{1}{\left(x+1\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.