Langkau ke kandungan utama
Microsoft
|
Math Solver
Selesaikan
Latihan
Bermain
Topik
Pra-algebra
Min
Mod
Faktor Sepunya Terbesar
Gandaan Sepunya Terkecil
Aturan Operasi
Pecahan
Pecahan Campuran
Pemfaktoran Perdana
Eksponen
Radikal
Algebra
Gabungkan Istilah Serupa
Selesaikan untuk mendapat pemboleh ubah
Faktor
Kembangkan
Menilai Pecahan
Persamaan Linear
Persamaan Kuadratik
Ketaksamaan
Sistem Persamaan
Matriks
Trigonometri
Permudahkan
Menilai
Graf
Selesaikan Persamaan
Kalkulus
Derivatif
Kamiran
Had
Input Algebra
Input Trigonometri
Input Kalkulus
Input Matriks
Selesaikan
Latihan
Bermain
Topik
Pra-algebra
Min
Mod
Faktor Sepunya Terbesar
Gandaan Sepunya Terkecil
Aturan Operasi
Pecahan
Pecahan Campuran
Pemfaktoran Perdana
Eksponen
Radikal
Algebra
Gabungkan Istilah Serupa
Selesaikan untuk mendapat pemboleh ubah
Faktor
Kembangkan
Menilai Pecahan
Persamaan Linear
Persamaan Kuadratik
Ketaksamaan
Sistem Persamaan
Matriks
Trigonometri
Permudahkan
Menilai
Graf
Selesaikan Persamaan
Kalkulus
Derivatif
Kamiran
Had
Input Algebra
Input Trigonometri
Input Kalkulus
Input Matriks
Asas
algebra
trigonometri
kalkulus
statistik
matriks
Aksara
Selesaikan untuk x
x=\pi n_{1}+\arctan(2)\text{, }n_{1}\in \mathrm{Z}
x=\pi n_{2}+\pi -\arctan(2)\text{, }n_{2}\in \mathrm{Z}
Graf
Graf Kedua-dua Belah dalam 2D
Graf dalam 2D
Kuiz
Trigonometry
{ \tan ( x ) } ^ {2} = 4
Masalah Sama dari Carian Web
How do you find the derivative of \displaystyle{\left({1}-{\tan{{x}}}\right)}^{{2}} ?
https://socratic.org/questions/how-do-you-find-the-derivative-of-1-tanx-2
Derivative of \displaystyle{\left({1}-{\tan{{x}}}\right)}^{{2}} is \displaystyle-{2}{{\sec}^{{2}}{x}}+{2}{\tan{{x}}}{{\sec}^{{2}}{x}} Explanation: We can use Chain rule here. Let \displaystyle{f{{\left({x}\right)}}}={\left({1}-{\tan{{x}}}\right)}^{{2}} ...
How do you multiply and simplify \displaystyle{\left({1}+{\tan{{x}}}\right)}^{{2}} ?
https://socratic.org/questions/how-do-you-multiply-and-simplify-1-tanx-2
see below Explanation: \displaystyle{\left({1}+{\tan{{x}}}\right)}^{{2}}={\left({1}+{\tan{{x}}}\right)}{\left({1}+{\tan{{x}}}\right)} ---> FOIL \displaystyle={1}+{\tan{{x}}}+{\tan{{x}}}+{{\tan}^{{2}}{x}} ...
How to integrate (x+\tan x)^2
https://www.quora.com/How-do-I-integrate-x-tan-x-2
Open the brackets. You then have three separate integrals. The first \int x^2dx is simple and equal to \frac {x^3}{3}. The second \int\tan^2xdx is also simple if you remember that \frac {d (\tan x)}{dx}=1+\tan^{2}x ...
Deducing the series expansion of \arctan(x^2) via the series expansion of \arctan(x) at x=0
https://math.stackexchange.com/questions/1652236/deducing-the-series-expansion-of-arctanx2-via-the-series-expansion-of-ar
This approach is perfectly valid. When we have a series \sum_{n=0}^\infty a_nx^n then replacing x\mapsto x^2 we get \sum_{n=0}^\infty a_nx^{2n}=\sum_{n=0}^\infty b_nx^n which is a power ...
\displaystyle{{\tan}^{{2}}{\left({x}\right)}}={0} How can you solve for \displaystyle{x} ?
https://socratic.org/questions/tan-2-x-0-how-can-you-solve-for-x
\displaystyle{x}={k}\pi,{k}\in{Z} Explanation: \displaystyle{{\tan}^{{2}}{x}}={0}\Rightarrow{\left({\tan{{x}}}\right)}^{{2}}={0}\Rightarrow{\tan{{x}}}={0}\Rightarrow{\sin{{x}}}={0} \displaystyle\Rightarrow{x}={k}\pi,{k}\in{Z}
How many solutions does a trigonometric function have 0\le x \le 2\pi?
https://math.stackexchange.com/questions/2118471/how-many-solutions-does-a-trigonometric-function-have-0-le-x-le-2-pi
I do one, you do the other: \tan^22x=1\iff \tan 2x=\pm1\iff 2x=\pm\frac\pi4+k\pi\;,\;\;k\in\Bbb Z\iff \iff x=\pm\frac\pi8+k\frac\pi2\;,\;\;k\in\Bbb Z Hint for the other: \sin3x=-\frac14\iff3x=\arcsin\left(-\frac14\right)+2k\pi\ldots\ldots\text{etc.}
Lagi Item
Kongsi
Salin
Disalin ke papan klip
Masalah yang serupa
\cos ( 3x + \pi ) = 0.5
\sin ( x ) = 1
\sin ( x ) - cos ( x ) = 0
\sin ( x ) + 2 = 3
{ \tan ( x ) } ^ {2} = 4
Kembali ke atas