y साठी सोडवा
y=\left(1-2x^{2}\right)^{3}
x साठी सोडवा (जटिल उत्तर)
x\in \frac{\sqrt{2e^{\frac{\pi i}{3}}\sqrt[3]{y}+2}}{2},-\frac{\sqrt{2e^{\frac{\pi i}{3}}\sqrt[3]{y}+2}}{2},-\frac{\sqrt{-2\sqrt[3]{y}+2}}{2},\frac{\sqrt{-2\sqrt[3]{y}+2}}{2},-\frac{\sqrt{-2ie^{\frac{\pi i}{6}}\sqrt[3]{y}+2}}{2},\frac{\sqrt{-2ie^{\frac{\pi i}{6}}\sqrt[3]{y}+2}}{2}
x साठी सोडवा
x=\frac{\sqrt{-2\sqrt[3]{y}+2}}{2}
x=-\frac{\sqrt{-2\sqrt[3]{y}+2}}{2}\text{, }y\leq 1
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
y=1-6x^{2}+12\left(x^{2}\right)^{2}-8\left(x^{2}\right)^{3}
\left(1-2x^{2}\right)^{3} विस्तारीत करण्यासाठी द्विपदीय प्रमेय वापरा \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}.
y=1-6x^{2}+12x^{4}-8\left(x^{2}\right)^{3}
दुसर्या घातामध्ये एक घात करण्यासाठी, घातांकांचा गुणाकार करा. 4 मिळविण्यासाठी 2 आणि 2 चा गुणाकार करा.
y=1-6x^{2}+12x^{4}-8x^{6}
दुसर्या घातामध्ये एक घात करण्यासाठी, घातांकांचा गुणाकार करा. 6 मिळविण्यासाठी 2 आणि 3 चा गुणाकार करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}