मुख्य सामग्री वगळा
y, x साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

y-\frac{1}{3}x=0
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून \frac{1}{3}x वजा करा.
y+3x=60
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंना 3x जोडा.
y-\frac{1}{3}x=0,y+3x=60
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
y-\frac{1}{3}x=0
समान चिन्हाच्या डाव्या बाजूला y विलग करून, y साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
y=\frac{1}{3}x
समीकरणाच्या दोन्ही बाजूस \frac{x}{3} जोडा.
\frac{1}{3}x+3x=60
इतर समीकरणामध्ये y साठी \frac{x}{3} चा विकल्प वापरा, y+3x=60.
\frac{10}{3}x=60
\frac{x}{3} ते 3x जोडा.
x=18
समीकरणाच्या दोन्ही बाजूंना \frac{10}{3} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
y=\frac{1}{3}\times 18
y=\frac{1}{3}x मध्ये x साठी 18 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण y साठी थेट सोडवू शकता.
y=6
18 ला \frac{1}{3} वेळा गुणाकार करा.
y=6,x=18
सिस्टम आता सोडवली आहे.
y-\frac{1}{3}x=0
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून \frac{1}{3}x वजा करा.
y+3x=60
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंना 3x जोडा.
y-\frac{1}{3}x=0,y+3x=60
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\60\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right))\left(\begin{matrix}0\\60\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right))\left(\begin{matrix}0\\60\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right))\left(\begin{matrix}0\\60\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-\frac{1}{3}\right)}&-\frac{-\frac{1}{3}}{3-\left(-\frac{1}{3}\right)}\\-\frac{1}{3-\left(-\frac{1}{3}\right)}&\frac{1}{3-\left(-\frac{1}{3}\right)}\end{matrix}\right)\left(\begin{matrix}0\\60\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{9}{10}&\frac{1}{10}\\-\frac{3}{10}&\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}0\\60\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 60\\\frac{3}{10}\times 60\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\18\end{matrix}\right)
अंकगणित करा.
y=6,x=18
मॅट्रिक्सचे y आणि x घटक बाहेर काढा.
y-\frac{1}{3}x=0
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून \frac{1}{3}x वजा करा.
y+3x=60
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंना 3x जोडा.
y-\frac{1}{3}x=0,y+3x=60
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
y-y-\frac{1}{3}x-3x=-60
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून y-\frac{1}{3}x=0 मधून y+3x=60 वजा करा.
-\frac{1}{3}x-3x=-60
y ते -y जोडा. y आणि -y रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-\frac{10}{3}x=-60
-\frac{x}{3} ते -3x जोडा.
x=18
समीकरणाच्या दोन्ही बाजूंना -\frac{10}{3} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
y+3\times 18=60
y+3x=60 मध्ये x साठी 18 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण y साठी थेट सोडवू शकता.
y+54=60
18 ला 3 वेळा गुणाकार करा.
y=6
समीकरणाच्या दोन्ही बाजूंमधून 54 वजा करा.
y=6,x=18
सिस्टम आता सोडवली आहे.