मुख्य सामग्री वगळा
x साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

a+b=-13 ab=30
समीकरण सोडवण्‍यासाठी, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) सूत्र वापरून x^{2}-13x+30 घटक. a आणि b शोधण्‍यासाठी, सोडवण्‍यासाठी सिस्‍टम सेट करा.
-1,-30 -2,-15 -3,-10 -5,-6
ab सकारात्‍मक असल्‍यापासून a व b मध्‍ये समान चिन्‍ह आहे. a+b नकारात्‍मक असल्‍याने, a व b दोन्‍ही नकारात्‍मक आहेत. 30 उत्‍पादन देत असलेल्‍या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
प्रत्‍येक पेअरची बेरीज करा.
a=-10 b=-3
बेरी -13 येत असलेल्‍या पेअरचे निरसन.
\left(x-10\right)\left(x-3\right)
मिळविलेले मूल्‍य वापरून \left(x+a\right)\left(x+b\right) घटक पदावली पुन्हा लिहा.
x=10 x=3
समीकरण निरसन शोधण्‍यासाठी, x-10=0 आणि x-3=0 सोडवा.
a+b=-13 ab=1\times 30=30
समीकरण सोडवण्‍यासाठी, समूहीकृत करून डाव्‍या हाताच्‍या बाजूला ठेवा. अगोदर, डाव्‍या हाताची बाजू x^{2}+ax+bx+30 म्‍हणून पुन्‍हा लिहावी लागेल. a आणि b शोधण्‍यासाठी, सोडवण्‍यासाठी सिस्‍टम सेट करा.
-1,-30 -2,-15 -3,-10 -5,-6
ab सकारात्‍मक असल्‍यापासून a व b मध्‍ये समान चिन्‍ह आहे. a+b नकारात्‍मक असल्‍याने, a व b दोन्‍ही नकारात्‍मक आहेत. 30 उत्‍पादन देत असलेल्‍या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
प्रत्‍येक पेअरची बेरीज करा.
a=-10 b=-3
बेरी -13 येत असलेल्‍या पेअरचे निरसन.
\left(x^{2}-10x\right)+\left(-3x+30\right)
\left(x^{2}-10x\right)+\left(-3x+30\right) प्रमाणे x^{2}-13x+30 पुन्हा लिहा.
x\left(x-10\right)-3\left(x-10\right)
पहिल्‍या आणि -3 मध्‍ये अन्‍य समूहात x घटक काढा.
\left(x-10\right)\left(x-3\right)
वितरण गुणधर्माचा वापर करून x-10 सामान्य पदाचे घटक काढा.
x=10 x=3
समीकरण निरसन शोधण्‍यासाठी, x-10=0 आणि x-3=0 सोडवा.
x^{2}-13x+30=0
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 30}}{2}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी 1, b साठी -13 आणि c साठी 30 विकल्प म्हणून ठेवा.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 30}}{2}
वर्ग -13.
x=\frac{-\left(-13\right)±\sqrt{169-120}}{2}
30 ला -4 वेळा गुणाकार करा.
x=\frac{-\left(-13\right)±\sqrt{49}}{2}
169 ते -120 जोडा.
x=\frac{-\left(-13\right)±7}{2}
49 चा वर्गमूळ घ्या.
x=\frac{13±7}{2}
-13 ची विरूद्ध संख्या 13 आहे.
x=\frac{20}{2}
आता ± धन असताना समीकरण x=\frac{13±7}{2} सोडवा. 13 ते 7 जोडा.
x=10
20 ला 2 ने भागा.
x=\frac{6}{2}
आता ± ऋण असताना समीकरण x=\frac{13±7}{2} सोडवा. 13 मधून 7 वजा करा.
x=3
6 ला 2 ने भागा.
x=10 x=3
समीकरण आता सोडवली आहे.
x^{2}-13x+30=0
यासारखी वर्गसमीकरणे वर्ग पूर्ण करून सोडविता येतात. वर्ग पूर्ण करण्यासाठी, समीकरण प्रथम x^{2}+bx=c फॉर्ममध्ये असले पाहिजे.
x^{2}-13x+30-30=-30
समीकरणाच्या दोन्ही बाजूंमधून 30 वजा करा.
x^{2}-13x=-30
30 त्याच्यामधूनच त्याला वजा केल्यास 0 उरते.
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=-30+\left(-\frac{13}{2}\right)^{2}
-13 चा भागाकार करा, x टर्म चा गुणांक, -\frac{13}{2} मिळवण्यासाठी 2 द्वारे. नंतर समीकरणाच्या दोन्ही बाजूंना -\frac{13}{2} चा वर्ग जोडा. ही पायरी समीकरणाच्या डाव्या बाजूला पूर्ण वर्ग बनवते.
x^{2}-13x+\frac{169}{4}=-30+\frac{169}{4}
अपूर्णांकाचा अंश आणि विभाजक या दोन्हींचा वर्ग काढून -\frac{13}{2} वर्ग घ्या.
x^{2}-13x+\frac{169}{4}=\frac{49}{4}
-30 ते \frac{169}{4} जोडा.
\left(x-\frac{13}{2}\right)^{2}=\frac{49}{4}
घटक x^{2}-13x+\frac{169}{4}. सामान्यतः, x^{2}+bx+c पूर्ण वर्ग असतो तेव्हा, \left(x+\frac{b}{2}\right)^{2} याचे घटक पाडता येतात.
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
x-\frac{13}{2}=\frac{7}{2} x-\frac{13}{2}=-\frac{7}{2}
सरलीकृत करा.
x=10 x=3
समीकरणाच्या दोन्ही बाजूस \frac{13}{2} जोडा.