मुख्य सामग्री वगळा
घटक
Tick mark Image
मूल्यांकन करा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

a+b=-12 ab=1\left(-45\right)=-45
समूहीकृत करून अभिव्‍यक्‍ती काढा. अगोदर, डाव्‍या हाताची बाजू x^{2}+ax+bx-45 म्‍हणून पुन्‍हा लिहावी लागेल. a आणि b शोधण्‍यासाठी, सोडवण्‍यासाठी सिस्‍टम सेट करा.
1,-45 3,-15 5,-9
ab नकारात्‍मक असल्‍याने, a व b मध्‍ये विरुद्ध चिन्‍हे आहेत. a+b नकारात्‍मक असल्‍याने, नकारात्‍मक नंबरमध्‍ये सकारात्‍मकतेपेक्षा परिपूर्ण मूल्‍य आहे. -45 उत्‍पादन देत असलेल्‍या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
1-45=-44 3-15=-12 5-9=-4
प्रत्‍येक पेअरची बेरीज करा.
a=-15 b=3
बेरी -12 येत असलेल्‍या पेअरचे निरसन.
\left(x^{2}-15x\right)+\left(3x-45\right)
\left(x^{2}-15x\right)+\left(3x-45\right) प्रमाणे x^{2}-12x-45 पुन्हा लिहा.
x\left(x-15\right)+3\left(x-15\right)
पहिल्‍या आणि 3 मध्‍ये अन्‍य समूहात x घटक काढा.
\left(x-15\right)\left(x+3\right)
वितरण गुणधर्माचा वापर करून x-15 सामान्य पदाचे घटक काढा.
x^{2}-12x-45=0
वर्गसमीकरण बहूपदी ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) परिवर्तन वापरून फॅक्टर करू शकतात, ज्यात x_{1} आणि x_{2} वर्गसमीकरण समीकरणाचे निरसन आहेत ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-45\right)}}{2}
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-45\right)}}{2}
वर्ग -12.
x=\frac{-\left(-12\right)±\sqrt{144+180}}{2}
-45 ला -4 वेळा गुणाकार करा.
x=\frac{-\left(-12\right)±\sqrt{324}}{2}
144 ते 180 जोडा.
x=\frac{-\left(-12\right)±18}{2}
324 चा वर्गमूळ घ्या.
x=\frac{12±18}{2}
-12 ची विरूद्ध संख्या 12 आहे.
x=\frac{30}{2}
आता ± धन असताना समीकरण x=\frac{12±18}{2} सोडवा. 12 ते 18 जोडा.
x=15
30 ला 2 ने भागा.
x=-\frac{6}{2}
आता ± ऋण असताना समीकरण x=\frac{12±18}{2} सोडवा. 12 मधून 18 वजा करा.
x=-3
-6 ला 2 ने भागा.
x^{2}-12x-45=\left(x-15\right)\left(x-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) वापरून मूळ अभिव्यक्तीचे फॅक्टर करा. x_{1} साठी 15 आणि x_{2} साठी -3 बदला.
x^{2}-12x-45=\left(x-15\right)\left(x+3\right)
p-\left(-q\right) ते p+q फॉर्मचे सर्व एक्सप्रेशन सरलीकृत करा.