x साठी सोडवा
x=7
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
x^{2}+49-14x=0
दोन्ही बाजूंकडून 14x वजा करा.
x^{2}-14x+49=0
मानक फॉर्ममध्ये ठेवण्यासाठी बहुपदी पुन्हा मांडा. टर्म्स उच्च पॉवरपासून निम्न पॉवरपर्यंत या क्रमात ठेवा.
a+b=-14 ab=49
समीकरण सोडवण्यासाठी, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) सूत्र वापरून x^{2}-14x+49 घटक. a आणि b शोधण्यासाठी, सोडवण्यासाठी सिस्टम सेट करा.
-1,-49 -7,-7
ab सकारात्मक असल्यापासून a व b मध्ये समान चिन्ह आहे. a+b नकारात्मक असल्याने, a व b दोन्ही नकारात्मक आहेत. 49 उत्पादन देत असलेल्या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
-1-49=-50 -7-7=-14
प्रत्येक पेअरची बेरीज करा.
a=-7 b=-7
बेरी -14 येत असलेल्या पेअरचे निरसन.
\left(x-7\right)\left(x-7\right)
मिळविलेले मूल्य वापरून \left(x+a\right)\left(x+b\right) घटक पदावली पुन्हा लिहा.
\left(x-7\right)^{2}
द्विपदी वर्ग असे पुन्हा लिहा.
x=7
समीकरण निरसन शोधण्यासाठी, x-7=0 सोडवा.
x^{2}+49-14x=0
दोन्ही बाजूंकडून 14x वजा करा.
x^{2}-14x+49=0
मानक फॉर्ममध्ये ठेवण्यासाठी बहुपदी पुन्हा मांडा. टर्म्स उच्च पॉवरपासून निम्न पॉवरपर्यंत या क्रमात ठेवा.
a+b=-14 ab=1\times 49=49
समीकरण सोडवण्यासाठी, समूहीकृत करून डाव्या हाताच्या बाजूला ठेवा. अगोदर, डाव्या हाताची बाजू x^{2}+ax+bx+49 म्हणून पुन्हा लिहावी लागेल. a आणि b शोधण्यासाठी, सोडवण्यासाठी सिस्टम सेट करा.
-1,-49 -7,-7
ab सकारात्मक असल्यापासून a व b मध्ये समान चिन्ह आहे. a+b नकारात्मक असल्याने, a व b दोन्ही नकारात्मक आहेत. 49 उत्पादन देत असलेल्या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
-1-49=-50 -7-7=-14
प्रत्येक पेअरची बेरीज करा.
a=-7 b=-7
बेरी -14 येत असलेल्या पेअरचे निरसन.
\left(x^{2}-7x\right)+\left(-7x+49\right)
\left(x^{2}-7x\right)+\left(-7x+49\right) प्रमाणे x^{2}-14x+49 पुन्हा लिहा.
x\left(x-7\right)-7\left(x-7\right)
पहिल्या आणि -7 मध्ये अन्य समूहात x घटक काढा.
\left(x-7\right)\left(x-7\right)
वितरण गुणधर्माचा वापर करून x-7 सामान्य पदाचे घटक काढा.
\left(x-7\right)^{2}
द्विपदी वर्ग असे पुन्हा लिहा.
x=7
समीकरण निरसन शोधण्यासाठी, x-7=0 सोडवा.
x^{2}+49-14x=0
दोन्ही बाजूंकडून 14x वजा करा.
x^{2}-14x+49=0
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 49}}{2}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी 1, b साठी -14 आणि c साठी 49 विकल्प म्हणून ठेवा.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 49}}{2}
वर्ग -14.
x=\frac{-\left(-14\right)±\sqrt{196-196}}{2}
49 ला -4 वेळा गुणाकार करा.
x=\frac{-\left(-14\right)±\sqrt{0}}{2}
196 ते -196 जोडा.
x=-\frac{-14}{2}
0 चा वर्गमूळ घ्या.
x=\frac{14}{2}
-14 ची विरूद्ध संख्या 14 आहे.
x=7
14 ला 2 ने भागा.
x^{2}+49-14x=0
दोन्ही बाजूंकडून 14x वजा करा.
x^{2}-14x=-49
दोन्ही बाजूंकडून 49 वजा करा. कोणत्याही संख्येला शून्यातून वजा केल्यास ऋण संख्या मिळते.
x^{2}-14x+\left(-7\right)^{2}=-49+\left(-7\right)^{2}
-14 चा भागाकार करा, x टर्म चा गुणांक, -7 मिळवण्यासाठी 2 द्वारे. नंतर समीकरणाच्या दोन्ही बाजूंना -7 चा वर्ग जोडा. ही पायरी समीकरणाच्या डाव्या बाजूला पूर्ण वर्ग बनवते.
x^{2}-14x+49=-49+49
वर्ग -7.
x^{2}-14x+49=0
-49 ते 49 जोडा.
\left(x-7\right)^{2}=0
घटक x^{2}-14x+49. सामान्यतः, x^{2}+bx+c पूर्ण वर्ग असतो तेव्हा, \left(x+\frac{b}{2}\right)^{2} याचे घटक पाडता येतात.
\sqrt{\left(x-7\right)^{2}}=\sqrt{0}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
x-7=0 x-7=0
सरलीकृत करा.
x=7 x=7
समीकरणाच्या दोन्ही बाजूस 7 जोडा.
x=7
समीकरण आता सोडवली आहे. निरसन समान आहेत.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}