y साठी सोडवा
y=\frac{5}{x^{16}}
x\neq 0
x साठी सोडवा (जटिल उत्तर)
x\in \sqrt[16]{5}e^{\frac{\pi i}{8}}y^{-\frac{1}{16}},\sqrt[16]{5}y^{-\frac{1}{16}},\sqrt{2}\sqrt[16]{5}\left(\frac{1}{2}+\frac{1}{2}i\right)y^{-\frac{1}{16}},\sqrt[16]{5}e^{\frac{3\pi i}{8}}y^{-\frac{1}{16}},\sqrt[16]{5}iy^{-\frac{1}{16}},\sqrt[16]{5}e^{\frac{5\pi i}{8}}y^{-\frac{1}{16}},\sqrt{2}\sqrt[16]{5}\left(-\frac{1}{2}+\frac{1}{2}i\right)y^{-\frac{1}{16}},\sqrt[16]{5}e^{\frac{7\pi i}{8}}y^{-\frac{1}{16}},-\sqrt[16]{5}y^{-\frac{1}{16}},\sqrt[16]{5}e^{\frac{9\pi i}{8}}y^{-\frac{1}{16}},\sqrt{2}\sqrt[16]{5}\left(-\frac{1}{2}-\frac{1}{2}i\right)y^{-\frac{1}{16}},\sqrt[16]{5}e^{\frac{11\pi i}{8}}y^{-\frac{1}{16}},-\sqrt[16]{5}iy^{-\frac{1}{16}},\sqrt[16]{5}e^{\frac{13\pi i}{8}}y^{-\frac{1}{16}},\sqrt{2}\sqrt[16]{5}\left(\frac{1}{2}-\frac{1}{2}i\right)y^{-\frac{1}{16}},\sqrt[16]{5}e^{\frac{15\pi i}{8}}y^{-\frac{1}{16}}
y\neq 0
x साठी सोडवा
x=\sqrt[16]{\frac{5}{y}}
x=-\sqrt[16]{\frac{5}{y}}\text{, }y>0
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
yx^{16}=5
शून्याने भागाकार करणे परिभाषित नसल्याने चल y हे 0 च्या समान असता कामा नये. समीकरणाच्या दोन्ही बाजूंना y ने गुणाकार करा.
x^{16}y=5
समीकरण मानक रूपामध्ये आहे.
\frac{x^{16}y}{x^{16}}=\frac{5}{x^{16}}
दोन्ही बाजूंना x^{16} ने विभागा.
y=\frac{5}{x^{16}}
x^{16} ने केलेला भागाकार x^{16} ने केलेला गुणाकार पूर्ववत करतो.
y=\frac{5}{x^{16}}\text{, }y\neq 0
चल y हे 0 च्यास मान असता कामा नये.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}