f साठी सोडवा (जटिल उत्तर)
\left\{\begin{matrix}f=x^{-\frac{2}{3}}\left(1-\left(mn^{2}\right)^{\frac{2}{3}}\right)\text{, }&x\neq 0\\f\in \mathrm{C}\text{, }&m=\frac{1}{n^{2}}\text{ and }n\neq 0\text{ and }x=0\end{matrix}\right.
f साठी सोडवा
\left\{\begin{matrix}f=-\frac{m^{\frac{2}{3}}n^{\frac{4}{3}}-1}{x^{\frac{2}{3}}}\text{, }&x\neq 0\\f\in \mathrm{R}\text{, }&n\neq 0\text{ and }x=0\text{ and }|m|=\frac{1}{n^{2}}\end{matrix}\right.
m साठी सोडवा (जटिल उत्तर)
\left\{\begin{matrix}m=\frac{\left(1-x^{\frac{2}{3}}f\right)^{3}}{n^{2}}\text{, }&\left(n\neq 0\text{ and }arg(1-x^{\frac{2}{3}}f)<\frac{2\pi }{3}\right)\text{ or }\left(n\neq 0\text{ and }f=x^{-\frac{2}{3}}\text{ and }x\neq 0\right)\\m\in \mathrm{C}\text{, }&f=x^{-\frac{2}{3}}\text{ and }x\neq 0\text{ and }n=0\end{matrix}\right.
m साठी सोडवा
\left\{\begin{matrix}m=-\frac{1}{n^{2}}\text{; }m=\frac{1}{n^{2}}\text{, }&x=0\text{ and }n\neq 0\\m\in \mathrm{R}\text{, }&f=\frac{1}{x^{\frac{2}{3}}}\text{ and }n=0\text{ and }x\neq 0\\m=-\frac{\left(1-x^{\frac{2}{3}}f\right)^{\frac{3}{2}}}{n^{2}}\text{; }m=\frac{\left(1-x^{\frac{2}{3}}f\right)^{\frac{3}{2}}}{n^{2}}\text{, }&n\neq 0\text{ and }f\leq \frac{1}{x^{\frac{2}{3}}}\text{ and }x\neq 0\end{matrix}\right.
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
fx^{\frac{2}{3}}+m^{\frac{2}{3}}\left(n^{2}\right)^{\frac{2}{3}}=1
विस्तृत करा \left(mn^{2}\right)^{\frac{2}{3}}.
fx^{\frac{2}{3}}+m^{\frac{2}{3}}n^{\frac{4}{3}}=1
दुसर्या घातामध्ये एक घात करण्यासाठी, घातांकांचा गुणाकार करा. \frac{4}{3} मिळविण्यासाठी 2 आणि \frac{2}{3} चा गुणाकार करा.
fx^{\frac{2}{3}}=1-m^{\frac{2}{3}}n^{\frac{4}{3}}
दोन्ही बाजूंकडून m^{\frac{2}{3}}n^{\frac{4}{3}} वजा करा.
x^{\frac{2}{3}}f=-m^{\frac{2}{3}}n^{\frac{4}{3}}+1
टर्म्सची पुन्हा क्रमवारी लावा.
x^{\frac{2}{3}}f=1-m^{\frac{2}{3}}n^{\frac{4}{3}}
समीकरण मानक रूपामध्ये आहे.
\frac{x^{\frac{2}{3}}f}{x^{\frac{2}{3}}}=\frac{1-m^{\frac{2}{3}}n^{\frac{4}{3}}}{x^{\frac{2}{3}}}
दोन्ही बाजूंना x^{\frac{2}{3}} ने विभागा.
f=\frac{1-m^{\frac{2}{3}}n^{\frac{4}{3}}}{x^{\frac{2}{3}}}
x^{\frac{2}{3}} ने केलेला भागाकार x^{\frac{2}{3}} ने केलेला गुणाकार पूर्ववत करतो.
f=x^{-\frac{2}{3}}\left(1-m^{\frac{2}{3}}n^{\frac{4}{3}}\right)
-m^{\frac{2}{3}}n^{\frac{4}{3}}+1 ला x^{\frac{2}{3}} ने भागा.
fx^{\frac{2}{3}}+m^{\frac{2}{3}}\left(n^{2}\right)^{\frac{2}{3}}=1
विस्तृत करा \left(mn^{2}\right)^{\frac{2}{3}}.
fx^{\frac{2}{3}}+m^{\frac{2}{3}}n^{\frac{4}{3}}=1
दुसर्या घातामध्ये एक घात करण्यासाठी, घातांकांचा गुणाकार करा. \frac{4}{3} मिळविण्यासाठी 2 आणि \frac{2}{3} चा गुणाकार करा.
fx^{\frac{2}{3}}=1-m^{\frac{2}{3}}n^{\frac{4}{3}}
दोन्ही बाजूंकडून m^{\frac{2}{3}}n^{\frac{4}{3}} वजा करा.
x^{\frac{2}{3}}f=-m^{\frac{2}{3}}n^{\frac{4}{3}}+1
टर्म्सची पुन्हा क्रमवारी लावा.
x^{\frac{2}{3}}f=1-m^{\frac{2}{3}}n^{\frac{4}{3}}
समीकरण मानक रूपामध्ये आहे.
\frac{x^{\frac{2}{3}}f}{x^{\frac{2}{3}}}=\frac{1-m^{\frac{2}{3}}n^{\frac{4}{3}}}{x^{\frac{2}{3}}}
दोन्ही बाजूंना x^{\frac{2}{3}} ने विभागा.
f=\frac{1-m^{\frac{2}{3}}n^{\frac{4}{3}}}{x^{\frac{2}{3}}}
x^{\frac{2}{3}} ने केलेला भागाकार x^{\frac{2}{3}} ने केलेला गुणाकार पूर्ववत करतो.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}