घटक
\left(2x-5\right)\left(x+1\right)
मूल्यांकन करा
\left(2x-5\right)\left(x+1\right)
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
a+b=-3 ab=2\left(-5\right)=-10
समूहीकृत करून अभिव्यक्ती काढा. अगोदर, डाव्या हाताची बाजू 2x^{2}+ax+bx-5 म्हणून पुन्हा लिहावी लागेल. a आणि b शोधण्यासाठी, सोडवण्यासाठी सिस्टम सेट करा.
1,-10 2,-5
ab नकारात्मक असल्याने, a व b मध्ये विरुद्ध चिन्हे आहेत. a+b नकारात्मक असल्याने, नकारात्मक नंबरमध्ये सकारात्मकतेपेक्षा परिपूर्ण मूल्य आहे. -10 उत्पादन देत असलेल्या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
1-10=-9 2-5=-3
प्रत्येक पेअरची बेरीज करा.
a=-5 b=2
बेरी -3 येत असलेल्या पेअरचे निरसन.
\left(2x^{2}-5x\right)+\left(2x-5\right)
\left(2x^{2}-5x\right)+\left(2x-5\right) प्रमाणे 2x^{2}-3x-5 पुन्हा लिहा.
x\left(2x-5\right)+2x-5
2x^{2}-5x मधील x घटक काढा.
\left(2x-5\right)\left(x+1\right)
वितरण गुणधर्माचा वापर करून 2x-5 सामान्य पदाचे घटक काढा.
2x^{2}-3x-5=0
वर्गसमीकरण बहूपदी ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) परिवर्तन वापरून फॅक्टर करू शकतात, ज्यात x_{1} आणि x_{2} वर्गसमीकरण समीकरणाचे निरसन आहेत ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
वर्ग -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-5\right)}}{2\times 2}
2 ला -4 वेळा गुणाकार करा.
x=\frac{-\left(-3\right)±\sqrt{9+40}}{2\times 2}
-5 ला -8 वेळा गुणाकार करा.
x=\frac{-\left(-3\right)±\sqrt{49}}{2\times 2}
9 ते 40 जोडा.
x=\frac{-\left(-3\right)±7}{2\times 2}
49 चा वर्गमूळ घ्या.
x=\frac{3±7}{2\times 2}
-3 ची विरूद्ध संख्या 3 आहे.
x=\frac{3±7}{4}
2 ला 2 वेळा गुणाकार करा.
x=\frac{10}{4}
आता ± धन असताना समीकरण x=\frac{3±7}{4} सोडवा. 3 ते 7 जोडा.
x=\frac{5}{2}
2 एक्स्ट्रॅक्ट आणि रद्द करून \frac{10}{4} अंश निम्नतम टर्म्सला कमी करा.
x=-\frac{4}{4}
आता ± ऋण असताना समीकरण x=\frac{3±7}{4} सोडवा. 3 मधून 7 वजा करा.
x=-1
-4 ला 4 ने भागा.
2x^{2}-3x-5=2\left(x-\frac{5}{2}\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) वापरून मूळ अभिव्यक्तीचे फॅक्टर करा. x_{1} साठी \frac{5}{2} आणि x_{2} साठी -1 बदला.
2x^{2}-3x-5=2\left(x-\frac{5}{2}\right)\left(x+1\right)
p-\left(-q\right) ते p+q फॉर्मचे सर्व एक्सप्रेशन सरलीकृत करा.
2x^{2}-3x-5=2\times \frac{2x-5}{2}\left(x+1\right)
सामान्य विभाजक शोधून आणि अंशांची वजाबाकी करून x मधून \frac{5}{2} वजा करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
2x^{2}-3x-5=\left(2x-5\right)\left(x+1\right)
2 आणि 2 मधील सर्वात मोठा सामान्य घटक 2 रद्द करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}