c d g - e g = \partial b
b साठी सोडवा (जटिल उत्तर)
\left\{\begin{matrix}b=\frac{g\left(cd-e\right)}{∂}\text{, }&∂\neq 0\\b\in \mathrm{C}\text{, }&\left(c=\frac{e}{d}\text{ and }d\neq 0\text{ and }∂=0\right)\text{ or }\left(g=0\text{ and }∂=0\right)\end{matrix}\right.
c साठी सोडवा (जटिल उत्तर)
\left\{\begin{matrix}c=\frac{b∂+eg}{dg}\text{, }&g\neq 0\text{ and }d\neq 0\\c\in \mathrm{C}\text{, }&\left(g=0\text{ and }∂=0\right)\text{ or }\left(g=0\text{ and }b=0\right)\text{ or }\left(g=-\frac{b∂}{e}\text{ and }d=0\text{ and }b\neq 0\text{ and }∂\neq 0\right)\end{matrix}\right.
b साठी सोडवा
\left\{\begin{matrix}b=\frac{g\left(cd-e\right)}{∂}\text{, }&∂\neq 0\\b\in \mathrm{R}\text{, }&\left(c=\frac{e}{d}\text{ and }d\neq 0\text{ and }∂=0\right)\text{ or }\left(g=0\text{ and }∂=0\right)\end{matrix}\right.
c साठी सोडवा
\left\{\begin{matrix}c=\frac{b∂+eg}{dg}\text{, }&g\neq 0\text{ and }d\neq 0\\c\in \mathrm{R}\text{, }&\left(g=0\text{ and }∂=0\right)\text{ or }\left(g=0\text{ and }b=0\right)\text{ or }\left(g=-\frac{b∂}{e}\text{ and }d=0\text{ and }b\neq 0\text{ and }∂\neq 0\right)\end{matrix}\right.
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
∂b=cdg-eg
बाजू स्वॅप करा ज्यामुळे सर्व चल टर्म डाव्या बाजूला असतील.
\frac{∂b}{∂}=\frac{g\left(cd-e\right)}{∂}
दोन्ही बाजूंना ∂ ने विभागा.
b=\frac{g\left(cd-e\right)}{∂}
∂ ने केलेला भागाकार ∂ ने केलेला गुणाकार पूर्ववत करतो.
cdg=∂b+eg
दोन्ही बाजूंना eg जोडा.
dgc=b∂+eg
समीकरण मानक रूपामध्ये आहे.
\frac{dgc}{dg}=\frac{b∂+eg}{dg}
दोन्ही बाजूंना dg ने विभागा.
c=\frac{b∂+eg}{dg}
dg ने केलेला भागाकार dg ने केलेला गुणाकार पूर्ववत करतो.
∂b=cdg-eg
बाजू स्वॅप करा ज्यामुळे सर्व चल टर्म डाव्या बाजूला असतील.
\frac{∂b}{∂}=\frac{g\left(cd-e\right)}{∂}
दोन्ही बाजूंना ∂ ने विभागा.
b=\frac{g\left(cd-e\right)}{∂}
∂ ने केलेला भागाकार ∂ ने केलेला गुणाकार पूर्ववत करतो.
cdg=∂b+eg
दोन्ही बाजूंना eg जोडा.
dgc=b∂+eg
समीकरण मानक रूपामध्ये आहे.
\frac{dgc}{dg}=\frac{b∂+eg}{dg}
दोन्ही बाजूंना dg ने विभागा.
c=\frac{b∂+eg}{dg}
dg ने केलेला भागाकार dg ने केलेला गुणाकार पूर्ववत करतो.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}