घटक
\left(a+4\right)\left(a+8\right)
मूल्यांकन करा
\left(a+4\right)\left(a+8\right)
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
p+q=12 pq=1\times 32=32
समूहीकृत करून अभिव्यक्ती काढा. अगोदर, डाव्या हाताची बाजू a^{2}+pa+qa+32 म्हणून पुन्हा लिहावी लागेल. p आणि q शोधण्यासाठी, सोडवण्यासाठी सिस्टम सेट करा.
1,32 2,16 4,8
pq सकारात्मक असल्यापासून p व q मध्ये समान चिन्ह आहे. p+q सकारात्मक असल्याने, p व q दोन्ही सकारात्मक आहेत. 32 उत्पादन देत असलेल्या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
1+32=33 2+16=18 4+8=12
प्रत्येक पेअरची बेरीज करा.
p=4 q=8
बेरी 12 येत असलेल्या पेअरचे निरसन.
\left(a^{2}+4a\right)+\left(8a+32\right)
\left(a^{2}+4a\right)+\left(8a+32\right) प्रमाणे a^{2}+12a+32 पुन्हा लिहा.
a\left(a+4\right)+8\left(a+4\right)
पहिल्या आणि 8 मध्ये अन्य समूहात a घटक काढा.
\left(a+4\right)\left(a+8\right)
वितरण गुणधर्माचा वापर करून a+4 सामान्य पदाचे घटक काढा.
a^{2}+12a+32=0
वर्गसमीकरण बहूपदी ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) परिवर्तन वापरून फॅक्टर करू शकतात, ज्यात x_{1} आणि x_{2} वर्गसमीकरण समीकरणाचे निरसन आहेत ax^{2}+bx+c=0.
a=\frac{-12±\sqrt{12^{2}-4\times 32}}{2}
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
a=\frac{-12±\sqrt{144-4\times 32}}{2}
वर्ग 12.
a=\frac{-12±\sqrt{144-128}}{2}
32 ला -4 वेळा गुणाकार करा.
a=\frac{-12±\sqrt{16}}{2}
144 ते -128 जोडा.
a=\frac{-12±4}{2}
16 चा वर्गमूळ घ्या.
a=-\frac{8}{2}
आता ± धन असताना समीकरण a=\frac{-12±4}{2} सोडवा. -12 ते 4 जोडा.
a=-4
-8 ला 2 ने भागा.
a=-\frac{16}{2}
आता ± ऋण असताना समीकरण a=\frac{-12±4}{2} सोडवा. -12 मधून 4 वजा करा.
a=-8
-16 ला 2 ने भागा.
a^{2}+12a+32=\left(a-\left(-4\right)\right)\left(a-\left(-8\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) वापरून मूळ अभिव्यक्तीचे फॅक्टर करा. x_{1} साठी -4 आणि x_{2} साठी -8 बदला.
a^{2}+12a+32=\left(a+4\right)\left(a+8\right)
p-\left(-q\right) ते p+q फॉर्मचे सर्व एक्सप्रेशन सरलीकृत करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}