I साठी सोडवा
I=\int _{0}^{1}\arcsin(dx)\mathrm{d}x
\left(d\leq -\frac{1}{x}\text{ and }d\geq \frac{1}{x}\text{ and }x<0\right)\text{ or }\left(d\geq -\frac{1}{x}\text{ and }d\leq \frac{1}{x}\text{ and }x>0\right)\text{ or }x=0\text{ or }\left(x\neq 0\text{ and }|d|=\frac{1}{|x|}\right)
d साठी सोडवा
\left\{\begin{matrix}d=\frac{\sin(I)}{x}\text{, }&\left(x\neq 0\text{ and }\exists n_{4}\in \mathrm{Z}\text{ : }\left(I>\pi n_{4}\text{ and }I<\pi n_{4}+\pi \right)\text{ and }|I|\leq \frac{\pi }{2}\right)\text{ or }\left(\exists n_{5}\in \mathrm{Z}\text{ : }I=\frac{\pi n_{5}}{2}\text{, }not(n_{5}<-1)\text{ and }not(n_{5}>1)\text{ and }x\neq 0\right)\text{ or }\left(\exists n_{3}\in \mathrm{Z}\text{ : }I=2\pi n_{3}+\frac{\pi }{2}\text{, }n_{3}=0\text{ and }x\neq 0\text{ and }\exists n_{4}\in \mathrm{Z}\text{ : }\left(I>\pi n_{4}\text{ and }I<\pi n_{4}+\pi \right)\right)\text{ or }\left(\exists n_{2}\in \mathrm{Z}\text{ : }I=2\pi n_{2}+\frac{3\pi }{2}\text{, }n_{2}=-1\text{ and }x\neq 0\text{ and }\exists n_{4}\in \mathrm{Z}\text{ : }\left(I>\pi n_{4}\text{ and }I<\pi n_{4}+\pi \right)\right)\\d\in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }I=\pi n_{1}\text{, }n_{1}=0\text{ and }x=0\end{matrix}\right.
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}