मुख्य सामग्री वगळा
घटक
Tick mark Image
मूल्यांकन करा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

a+b=13 ab=6\left(-28\right)=-168
समूहीकृत करून अभिव्‍यक्‍ती काढा. अगोदर, डाव्‍या हाताची बाजू 6x^{2}+ax+bx-28 म्‍हणून पुन्‍हा लिहावी लागेल. a आणि b शोधण्‍यासाठी, सोडवण्‍यासाठी सिस्‍टम सेट करा.
-1,168 -2,84 -3,56 -4,42 -6,28 -7,24 -8,21 -12,14
ab नकारात्‍मक असल्‍याने, a व b मध्‍ये विरुद्ध चिन्‍हे आहेत. a+b सकारात्‍मक असल्‍याने, सकारात्‍मक नंबरमध्‍ये नकारात्‍मकतेपेक्षा परिपूर्ण मूल्‍य आहे. -168 उत्‍पादन देत असलेल्‍या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
-1+168=167 -2+84=82 -3+56=53 -4+42=38 -6+28=22 -7+24=17 -8+21=13 -12+14=2
प्रत्‍येक पेअरची बेरीज करा.
a=-8 b=21
बेरी 13 येत असलेल्‍या पेअरचे निरसन.
\left(6x^{2}-8x\right)+\left(21x-28\right)
\left(6x^{2}-8x\right)+\left(21x-28\right) प्रमाणे 6x^{2}+13x-28 पुन्हा लिहा.
2x\left(3x-4\right)+7\left(3x-4\right)
पहिल्‍या आणि 7 मध्‍ये अन्‍य समूहात 2x घटक काढा.
\left(3x-4\right)\left(2x+7\right)
वितरण गुणधर्माचा वापर करून 3x-4 सामान्य पदाचे घटक काढा.
6x^{2}+13x-28=0
वर्गसमीकरण बहूपदी ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) परिवर्तन वापरून फॅक्टर करू शकतात, ज्यात x_{1} आणि x_{2} वर्गसमीकरण समीकरणाचे निरसन आहेत ax^{2}+bx+c=0.
x=\frac{-13±\sqrt{13^{2}-4\times 6\left(-28\right)}}{2\times 6}
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-13±\sqrt{169-4\times 6\left(-28\right)}}{2\times 6}
वर्ग 13.
x=\frac{-13±\sqrt{169-24\left(-28\right)}}{2\times 6}
6 ला -4 वेळा गुणाकार करा.
x=\frac{-13±\sqrt{169+672}}{2\times 6}
-28 ला -24 वेळा गुणाकार करा.
x=\frac{-13±\sqrt{841}}{2\times 6}
169 ते 672 जोडा.
x=\frac{-13±29}{2\times 6}
841 चा वर्गमूळ घ्या.
x=\frac{-13±29}{12}
6 ला 2 वेळा गुणाकार करा.
x=\frac{16}{12}
आता ± धन असताना समीकरण x=\frac{-13±29}{12} सोडवा. -13 ते 29 जोडा.
x=\frac{4}{3}
4 एक्स्ट्रॅक्ट आणि रद्द करून \frac{16}{12} अंश निम्नतम टर्म्सला कमी करा.
x=-\frac{42}{12}
आता ± ऋण असताना समीकरण x=\frac{-13±29}{12} सोडवा. -13 मधून 29 वजा करा.
x=-\frac{7}{2}
6 एक्स्ट्रॅक्ट आणि रद्द करून \frac{-42}{12} अंश निम्नतम टर्म्सला कमी करा.
6x^{2}+13x-28=6\left(x-\frac{4}{3}\right)\left(x-\left(-\frac{7}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) वापरून मूळ अभिव्यक्तीचे फॅक्टर करा. x_{1} साठी \frac{4}{3} आणि x_{2} साठी -\frac{7}{2} बदला.
6x^{2}+13x-28=6\left(x-\frac{4}{3}\right)\left(x+\frac{7}{2}\right)
p-\left(-q\right) ते p+q फॉर्मचे सर्व एक्सप्रेशन सरलीकृत करा.
6x^{2}+13x-28=6\times \frac{3x-4}{3}\left(x+\frac{7}{2}\right)
सामान्य विभाजक शोधून आणि अंशांची वजाबाकी करून x मधून \frac{4}{3} वजा करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
6x^{2}+13x-28=6\times \frac{3x-4}{3}\times \frac{2x+7}{2}
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{7}{2} ते x जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
6x^{2}+13x-28=6\times \frac{\left(3x-4\right)\left(2x+7\right)}{3\times 2}
अंशाला अंशांच्या संख्येने आणि विभाजकाला विभाजकांच्या संख्येने गुणाकार करून \frac{2x+7}{2} चा \frac{3x-4}{3} वेळा गुणाकार करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
6x^{2}+13x-28=6\times \frac{\left(3x-4\right)\left(2x+7\right)}{6}
2 ला 3 वेळा गुणाकार करा.
6x^{2}+13x-28=\left(3x-4\right)\left(2x+7\right)
6 आणि 6 मधील सर्वात मोठा सामान्य घटक 6 रद्द करा.