घटक
\left(6x-5\right)\left(x+3\right)
मूल्यांकन करा
\left(6x-5\right)\left(x+3\right)
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
a+b=13 ab=6\left(-15\right)=-90
समूहीकृत करून अभिव्यक्ती काढा. अगोदर, डाव्या हाताची बाजू 6x^{2}+ax+bx-15 म्हणून पुन्हा लिहावी लागेल. a आणि b शोधण्यासाठी, सोडवण्यासाठी सिस्टम सेट करा.
-1,90 -2,45 -3,30 -5,18 -6,15 -9,10
ab नकारात्मक असल्याने, a व b मध्ये विरुद्ध चिन्हे आहेत. a+b सकारात्मक असल्याने, सकारात्मक नंबरमध्ये नकारात्मकतेपेक्षा परिपूर्ण मूल्य आहे. -90 उत्पादन देत असलेल्या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
-1+90=89 -2+45=43 -3+30=27 -5+18=13 -6+15=9 -9+10=1
प्रत्येक पेअरची बेरीज करा.
a=-5 b=18
बेरी 13 येत असलेल्या पेअरचे निरसन.
\left(6x^{2}-5x\right)+\left(18x-15\right)
\left(6x^{2}-5x\right)+\left(18x-15\right) प्रमाणे 6x^{2}+13x-15 पुन्हा लिहा.
x\left(6x-5\right)+3\left(6x-5\right)
पहिल्या आणि 3 मध्ये अन्य समूहात x घटक काढा.
\left(6x-5\right)\left(x+3\right)
वितरण गुणधर्माचा वापर करून 6x-5 सामान्य पदाचे घटक काढा.
6x^{2}+13x-15=0
वर्गसमीकरण बहूपदी ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) परिवर्तन वापरून फॅक्टर करू शकतात, ज्यात x_{1} आणि x_{2} वर्गसमीकरण समीकरणाचे निरसन आहेत ax^{2}+bx+c=0.
x=\frac{-13±\sqrt{13^{2}-4\times 6\left(-15\right)}}{2\times 6}
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-13±\sqrt{169-4\times 6\left(-15\right)}}{2\times 6}
वर्ग 13.
x=\frac{-13±\sqrt{169-24\left(-15\right)}}{2\times 6}
6 ला -4 वेळा गुणाकार करा.
x=\frac{-13±\sqrt{169+360}}{2\times 6}
-15 ला -24 वेळा गुणाकार करा.
x=\frac{-13±\sqrt{529}}{2\times 6}
169 ते 360 जोडा.
x=\frac{-13±23}{2\times 6}
529 चा वर्गमूळ घ्या.
x=\frac{-13±23}{12}
6 ला 2 वेळा गुणाकार करा.
x=\frac{10}{12}
आता ± धन असताना समीकरण x=\frac{-13±23}{12} सोडवा. -13 ते 23 जोडा.
x=\frac{5}{6}
2 एक्स्ट्रॅक्ट आणि रद्द करून \frac{10}{12} अंश निम्नतम टर्म्सला कमी करा.
x=-\frac{36}{12}
आता ± ऋण असताना समीकरण x=\frac{-13±23}{12} सोडवा. -13 मधून 23 वजा करा.
x=-3
-36 ला 12 ने भागा.
6x^{2}+13x-15=6\left(x-\frac{5}{6}\right)\left(x-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) वापरून मूळ अभिव्यक्तीचे फॅक्टर करा. x_{1} साठी \frac{5}{6} आणि x_{2} साठी -3 बदला.
6x^{2}+13x-15=6\left(x-\frac{5}{6}\right)\left(x+3\right)
p-\left(-q\right) ते p+q फॉर्मचे सर्व एक्सप्रेशन सरलीकृत करा.
6x^{2}+13x-15=6\times \frac{6x-5}{6}\left(x+3\right)
सामान्य विभाजक शोधून आणि अंशांची वजाबाकी करून x मधून \frac{5}{6} वजा करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
6x^{2}+13x-15=\left(6x-5\right)\left(x+3\right)
6 आणि 6 मधील सर्वात मोठा सामान्य घटक 6 रद्द करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}